Как подобрать конденсаторы для запуска электродвигателя
Функция стабилизаторов сводится к тому, что они выполняют роль емкостных наполнителей энергии для выпрямителей фильтров стабилизаторов. Также они могут производить передачу сигнала между усилителями. Для запуска и работы в течение продолжительного количества времени, в системе переменного тока для асинхронных двигателей тоже используют конденсаторы. Время работы такой системы можно варьировать с помощью емкости выбранного конденсатора.
- Описание разновидностей конденсаторов и расчет удельной емкости ↓
- Схема подключения «Треугольник» ↓
- Схема подключения «Звезда» ↓
- Блиц-советы ↓
Первым и единственно главным параметром вышеупомянутого инструмента является емкость. Она зависит от площади активного подключения, который изолирован слоем диэлектрика. Этот слой практически невиден человеческому глазу, небольшое количество атомных слоев формируют ширину пленки.
То есть конденсатор создан для того, чтоб накапливать, хранить и передавать определенное количество энергии. Так зачем они нужны, если можно подключить источник питания напрямую к двигателю. Все тут не так просто. Если подключить двигатель непосредственно к источнику питания, то в лучшем случае он не будет работать, в худшем сгорит.
Для того чтоб трехфазный мотор работал в однофазной цепи нужен аппарат, который сможет сдвинуть фазу на 90° на рабочем (третьем) выводе. Также конденсатор играет роль, такой себе катушки индуктивности, за счет того что через него проходит переменный ток – его скачки нивелируются за чет того что, перед работой, в конденсаторе отрицательные и положительные заряды равномерно накапливаются на пластинах, а потом передаются принимающему устройству.
Всего существует 3 основных вида конденсаторов:
- Электролитические;
- Неполярные;
- Полярные.
Что такое пусковой ток аккумулятора
А еще мы рассмотрим, когда он возникает и в чем измеряется?
Пусковой ток — один из ключевых параметров аккумулятора. Эта величина характеризует параметр тока, протекающего в стартере автомобиля в момент пуска силового узла.
Считается, что описываемый нами ток непосредственным образом связан с режимом работы машины.
Так, при частой эксплуатации транспортного средства в условиях холодов рекомендуется покупать АКБ с большим пусковым током.
Номинальный параметр пускового тока соответствует мощности источника питания, которую тот способен выдавать на протяжении 30 секунд при температуре -18 градусов (по Цельсию).
Пусковой (стартерный) ток возникает в момент поворота ключа в замке зажигания и начале проворачивания стартера. Единица измерения данного параметра — Ампер.
Подписка на рассылку
Ток, который нужен для запуска электродвигателя, называется пусковым. Как правило, пусковые токи электродвигателей в несколько раз большие, чем токи, необходимые для работы в нормально-устойчивом режиме.
Рисунок 1. Асинхронный электродвигатель Ток, который необходим для запуска электродвигателей как переменного, так и постоянного тока, называется пусковым. Величина пускового тока в несколько раз превышает, номинальное значение тока статора, необходимое для работы в нормально-устойчивом режиме. Последствием высоких пусковых токов электродвигателей является кратковременное падение напряжения в силовых сетях, что может негативно отразиться на работоспособности другого оборудования, подключенного в эту же сеть. Поэтому при подключении и наладке двигателей переменного тока (наиболее распространенных в промышленности) стоит задача максимально снизить значения пусковых токов, а также повысить плавность пуска двигателя за счет применения специального дополнительного оборудования. Одной из наиболее эффективных категорий устройств, облегчающих тяжелые условия пуска, являются частотные преобразователи и устройства плавного пуска, с помощью которых обеспечивается плавный управляемый разгон и торможение электродвигателя. Пусковой ток асинхронного электродвигателя с фазным ротором уменьшают за счет внедрения в цепь ротора специальных регулируемых резисторов.
Расчет пускового тока асинхронного электродвигателя
Рисунок 2. Асинхронный электродвигатель с частотным преобразователем Расчет пускового тока электродвигателя необходим для того, чтобы правильно подобрать автоматические выключатели с необходимыми времятоковыми характеристиками, способными защитить линию включения данного электродвигателя. Определение номинального тока трехфазного электродвигателя переменного тока согласно формуле:Iн=Pн/(Uн*cosφ*√3ηн), где • Рн – номинальная мощность двигателя, кВт, • Uн – номинальное напряжение, кВт; • ηн — номинальный коэффициент полезного действия, деленный на 100; • cosφ —номинальный коэффициент мощности электромотора. Расчет величины пускового тока по формуле Iпуск=Iн*Кпуск, где • Iн – номинальная величина тока обмоток статора; • Кпуск – коэффициент кратности пускового тока к номинальному значению. Данные о мощности двигателя, номинальном напряжении и кратности пускового тока к номинальному можно найти в технической документации двигателя или увидеть на его шильдике.
Конденсаторные установки промышленных предприятий — Разряд конденсаторов
2.3. Разряд конденсаторов
При отключении конденсаторных установок от сети в ней остается электрический заряд, напряжение которого примерно (равно напряжению сети в момент отключения. Для быстрого снижения напряжения на зажимах отключенной от сети КУ предусматриваются специальные активные или индуктивные сопротивления, которые подключают параллельно конденсаторам. Разряд КУ необходим также для обеспечения безопасности обслуживающего персонала, так как естественный саморазряд происходит медленно. Значение разрядного сопротивления R, Ом, определяется по формуле где Uф — фазное напряжение сети, кВ; Q — мощность конденсаторной установки, квар. Схемы соединений разрядных резисторов в трехфазных КУ выполняются треугольником, открытым треугольником и звездой. Наиболее надежной схемой для установок до 1000 В следует считать соединение треугольником, так как при обрыве одной фазы будет происходить разряд по схеме открытого треугольника во всех трех фазах (рис. 2.6, а). Для КУ выше 1000 В в качестве разрядных резисторов рекомендуется применять два однофазных трансформатора напряжения, соединенных в открытый треугольник, или индуктивные резисторы (рис. 2.6, б), причем если для конденсаторов до 1000 В «Правилами устройства электроустановок» рекомендуется в целях экономии электроэнергии работа без постоянно присоединенных резисторов с автоматическим присоединением последних в момент отключения конденсаторов, то для конденсаторов выше 1000 В разрядные резисторы должны быть постоянно присоединены к конденсаторам, поэтому в цепи между резисторами и конденсаторами не должно быть каких-либо коммутационных аппаратов.
Рис. 2.6. Подключение сопротивлений для разряда КУ: а — внешнее из активных сопротивлений; б — индуктивное (трансформаторы напряжения); в — активные сопротивления, встроенные внутрь конденсатора
Рис. 2.7. Конденсатор выше 1000 В со встроенными разрядными резисторами: / — разрядные резисторы; 2— секции конденсатора
При разделении конденсаторных установок на несколько секций для многоступенчатого регулирования, например в схемах форсировки, каждая секция с отдельным выключателем должна иметь свой комплект разрядных резисторов. Для КУ, присоединенной через общий с трансформатором или электродвигателем выключатель, разрядные резисторы не требуются, так как разряд конденсаторов происходит через обмотки этих ЭП. Наилучший способ разряда конденсатора, а также надежное снижение напряжения на зажимах конденсатора при внезапных разрывах электрической цепи обеспечивают конденсаторы со встроенными разрядными резисторами (рис. 2.6, в). У конденсаторов 380 В со встроенными разрядными резисторами их устанавливают снаружи между выводами конденсатора. У конденсаторов 3—10 кВ ввиду отсутствия малогабаритных резисторов, рассчитанных на высокое напряжение, разрядный резистор устанавливают внутри верхней части бака конденсатора и подсоединяют параллельно выводам. Между собой разрядные резисторы соединены последовательно (рис. 2.7). Небольшая рассеивающая мощность этих резисторов (6—8 В-А) незначительно увеличивает потери в конденсаторе, но при этом исключается необходимость установки для разряда конденсаторов трансформаторов напряжения и другой аппаратуры.
- Назад
- Вперед
Реверс однофазного двигателя
Однофазным называется такой асинхронный двигатель, на статоре которого имеется лишь одна рабочая обмотка, напрямую питаемая от единственной фазы сети. Есть в однофазном двигателе и вспомогательная (пусковая) обмотка, которая используется только в момент старта двигателя, для того чтобы придать ротору начальный импульс, фактически пусковая обмотка включается с целью вывести ротор из положения равновесия, иначе бы он не сдвинулся с места без посторонней помощи, и его пришлось бы сталкивать как-то иначе.
Как и в любом двигателе, в однофазном тоже имеются ротор, который вращается, и статор, который неподвижен, а служит лишь для создания изменяющегося во времени магнитного поля. Рабочая и пусковая обмотки расположены на статоре друг относительно друга под прямым углом, причем рабочая обмотка занимает вдвое больше пазов, чем пусковая.
Можно сказать, что в момент пуска такой двигатель работает как двухфазный, а после — переходит в однофазный рабочий режим. Ротор однофазного асинхронного двигателя по конструкции самый обычный — короткозамкнутый (типа «беличья клетка») или цилиндрический (полый).
Что получилось бы, если б пусковой обмотки на статоре вообще не было, или она была бы, но не использовалась. В этом случае, при включении двигателя в сеть, в рабочей обмотке появилось бы пульсирующее магнитное поле, и ротор бы попал в условия пронизывающего его изменяющегося магнитного потока.
Но если ротор изначально неподвижен, а мы внезапно подали переменный ток лишь в рабочую обмотку, то ротор с места не сдвинется, потому что суммарный вращательный момент (против часовой стрелки и по часовой стрелке) будет равен нулю, несмотря на индуцируемые в роторе ЭДС, и нет причин для вращения, ведь возникающие силы Ампера друг друга точно компенсируют.
Но совсем другое дело, если ротор подтолкнуть, – тогда он продолжит вращение в том же направлении, что и стартовый толчок, ведь теперь не только по закону электромагнитной индукции в роторе наведутся ЭДС и возникнут соответствующие токи, которые по закону Ампера станут от магнитного поля отталкиваться, но и (поскольку ротор уже имеет вращение) результирующий момент по направлению толчка окажется большим, чем момент против направления толчка. В итоге получим продолжение вращения ротора.
Чтобы пусковая обмотка смогла ротор в начальный момент толкнуть, она должна быть не просто смещена в пространстве относительно рабочей обмотки, но еще и ток в ней должен быть сдвинут по фазе относительно тока рабочей обмотки, тогда совместное действие двух этих обмоток статора окажется эквивалентно не просто пульсирующему магнитному полю, но уже вращающемуся магнитному полю. А это – как раз то, что необходимо для разгона ротора в момент пуска однофазного двигателя.
Для смещения по фазе тока в пусковой обмотке, как правило применяют необходимой емкости конденсатор, включенный последовательно с пусковой обмоткой, и создающий сдвиг фаз в 90 градусов. Это стандартное решение для двигателя с расщепленной фазой.
Как только двигатель включается в сеть, оператор нажимает на кнопку выключателя, который подает питание к цепи пусковой обмотки, и как только обороты достигнут необходимого значения соответствующего номиналу при данной частоте сети, кнопку отпускают.
Для получения реверса однофазного двигателя с конденсаторным пуском, достаточно обеспечить условие, когда пусковой толчок будет подаваться в другом направлении, чем подавался изначально. Это достигается путем изменения относительного порядка чередования фаз в рабочей и пусковой обмотках.
Для обеспечения данных условия, необходимо переключить рабочую или пусковую обмотку, то есть поменять «полярность» подключения ее выводов к сети либо к сети и к конденсатору. Это несложно реализовать, поскольку на однофазном двигателе есть клеммник, на который выведены каждый из концов как пусковой, так и рабочей обмоток. Рабочая обмотка имеет меньшее активное сопротивление, чем пусковая, поэтому ее несложно найти при помощи мультиметра. Лучшее решение — разместить выводы пусковой обмотки на двухполюсный переключатель без фиксации.
Пусковой ток и его кратность
Чтобы тронуть с места (пустить) двигатель, нужен громадный пусковой ток (Iп). Громадный – по сравнению с номинальным (рабочим) током Iн на установившейся скорости. В статьях обычно указывают, что пусковой ток превышает рабочий в 5-8 раз. Это число называется “Кратность пускового тока” и обозначается как коэффициент Кп = Iп / Iн.
Пусковой ток – это ток, который потребляет электродвигатель во время пуска. Узнать пусковой ток можно, зная номинальный ток и коэффициент Кп:
Iп = Кп · Iн
Номинальный ток всегда указан на шильдике двигателя:
Номинальный ток двигателя для разных напряжений и схем включения
Кп – рабочий параметр, который указан в характеристиках двигателя, но на корпусе двигателя он никогда не указывается.
Кратность пускового тока . На шильдике его обычно нет, а в документации и на сайтах производителей он присутствует:
Параметры двигателей. Кратность пускового тока
Судя по каталогам (их можно будет скачать в конце статьи, как обычно у меня), пусковой ток превышает номинальный в пределах от 3,5 до 8,5 раз.
Кратность пускового тока зависит прежде всего от мощности двигателя и от количества пар полюсов. Чем меньше мощность, тем меньше пусковой ток. А чем меньше пар полюсов (больше номинальные обороты) – тем больше пусковой ток.
Так происходит потому, что потребляемый ток и момент инерции при пуске зависит от конструкции двигателя и способа намотки. Мало полюсов – низкое сопротивление обмоток. Низкое сопротивление – большой ток. Кроме того, высокооборотистым движкам для полной раскрутки требуется больше времени, а это опять же тяжелый пуск.
Если объяснить более научным языком, то дело происходит так. Когда двигатель стоит, его степень скольжения S = 1. При раскручивании (или, как любят говорить спецы, разворачивании) S стремится к нулю, но никогда его не достигает – на то двигатель и называют асинхронным, ведь вращение ротора никогда не догонит вращение поля статора из-за потерь. Одновременно сердечник ротора насыщается магнитным полем, увеличивается ЭДС самоиндукции и индукционное сопротивление. А значит, уменьшается ток.
На самом деле не так всё просто, начинаем копать глубже.
Как уменьшить пусковой ток асинхронного двигателя
Решить проблему большого пускового тока электрически можно двумя путями:
- Вначале подавать на двигатель пониженное напряжение, а затем, по мере разгона, напряжение и скорость вращения поднять до номинального значения. Такой способ применяется в электронных устройствах запуска двигателей – софтстартерах (УПП) и преобразователях частоты (частотниках).
- Использовать ограничители пускового тока, когда при пуске двигатель питается через мощные резисторы, а потом по таймеру переключается на номинал. Сопротивление резисторов соизмеримо с сопротивлением обмотки стартера (единицы Ом, в зависимости от мощности). Это устройство легко сделать самому (контактор + реле времени).
- Сразу подавать полное напряжение, но сначала подключать обмотки так хитро, чтобы двигатель не раскручивался на полную мощность. И только когда в этом режиме двигатель раскрутится насколько это возможно, включать его на полную. Эта схема называется “Звезда – Треугольник”, читайте в следующей статье.
Можно сконструировать какую-то муфту, коробку передач, вариатор – для того чтобы раскрутить двигатель вхолостую, а потом подключить потребителя механического момента.
В современном оборудовании двигатели мощнее 2,2 кВт практически никогда напрямую не включают, поэтому для них пусковые токи рояли не играют. Для уменьшения пускового тока (и не только) в основном применяют преобразователи частоты, о которых будут отдельные статьи.
Motor starting current compensation.
Активные фильтры эффективно компенсируют пусковые токи электродвигателей, сохраняя неизменным пусковой момент и время разгона привода.
Пусковые токи электродвигателей переменного тока (асинхронных и синхронных при асинхронном пуске) возникают в момент подачи напряжения и могут превышать в 5–7 раз номинальный ток. По мере разгона двигателя ток снижается, вплоть до достижения подсинхронной скорости. Пусковые токи перегружают источники электроэнергии, линии электропередачи, могут привести к срабатыванию защит и отключению коммутационных аппаратов.
При питании удалённых потребителей по протяжённым линиям пусковые токи вызывают глубокие провалы напряжения.
Провал напряжения на трансформаторах собственных нужд шагающего экскаватора при включении привода тяги; в результате провала напряжения главные приводы отключены защитой.
При электроснабжении от автономных источников пусковые токи создают опасность отключения генераторов.
Применение тиристорных устройств плавного пуска (УПП) лишь отчасти улучшает ситуацию, так как пусковой ток при любых условиях в 2,5 – 3 раза будет превышать номинальное значение.
Пусковой ток (черная линия) и напряжение (красная линия) при включении привода подруливающего устройства (1 МВт) с тиристорным УПП на судне.
На приведенном графике ток при пуске в 3 раза превышает номинальное значение (940 А); колебания напряжения на входе УПП – до 20% от номинального (690 В).
Особенность пускового тока электродвигателя состоит в том, что он носит в основном реактивный (индуктивный) характер.
Коэффициент мощности в цепи питания устройства плавного пуска асинхронного двигателя.
На приведенном графике коэффициент мощности в цепи питания УПП при пуске асинхронного двигателя изменяется от 0,1 до 0,8.
Активные фильтры прекрасно компенсируют реактивную мощность, и очень быстро. Это позволяет использовать их для компенсации пускового тока электродвигателей.
Фильтр подключается параллельно электродвигателю.
При работе в режиме динамической компенсации реактивной мощности фильтру нужно указать только величину коэффициента мощности, которую требуется поддерживать. В момент подачи питающего напряжения на электродвигатель активный фильтр мгновенно начинает генерировать реактивную мощность ёмкостного характера и предоставляет её для намагничивания стали электрической машины. Таким образом, обеспечивается необходимый для двигателя пусковой ток, при этом ток в сети возрастает незначительно (в зависимости от величины активной мощности при пуске).
Компенсация пускового тока асинхронного двигателя активным фильтром (осциллограмма токов).
На осциллограмме:
красная линия – ток в обмотке статора асинхронного двигателя;
синяя линия – ток, потребляемый из сети.
Достоинство данного решения по сравнению с УПП в том, что двигатель разворачивается при номинальном напряжении. Это обеспечивает требуемый момент на валу и позволяет избежать затяжного пуска привода.
Как снизить вред от пускового тока?
Если изменить схему питания двигателя невозможно (например, сосед по даче каждые пол часа запускает токарный станок, а никакие “методы воздействия” не воздействуют), то можно применить различные методы минимизации вреда от пусковых токов. Например:
- На важные потребители или на весь дом установить инверторный ИБП (UPS), который будет держать напряжение в норме при любом раскладе. Самый дорогой, но действенный способ.
- Поставить стабилизатор напряжения. Но учтите, что не все стабилизаторы одинаково полезны. Иногда они могут не справляться, а иногда – даже усугублять ситуацию. Подробнее – по приведенной ссылке.
- Если питание – однофазное, то можно попробовать переключиться с “плохой” фазы на “хорошую”. Иногда этот способ так же эффективен, как использование телепорта вместо автобуса “Таганрог-Москва”.
Но напоминаю, что мы тут занимаемся не устранением последствий, а предотвращением проблем, поэтому погнали дальше.
Как отличить конструкцию однофазного асинхронного электродвигателя и определить его тип по статистической таблице
Привожу выдержку из книги Алиева И И про асинхронные двигатели, вернее таблицу основных электрических характеристик.
Как видите, промышленностью массово выпущены модели с:
- повышенным сопротивлением пусковой обмотки;
- пусковым конденсатором;
- рабочим конденсатором;
- пусковым и рабочим конденсатором;
- экранированными полюсами.
А еще здесь не указаны более новые разработки, называемые АЭД — асинхронные энергосберегающие двигатели, обеспечивающие:
- значительное снижение реактивной мощности;
- повышение КПД;
- уменьшение потребления полной мощности при той же нагрузке на вал, что и у обычных моделей.
Их конструкторское отличие: внутри зубцов сердечника статора выполнены углубления. В них жестко вставлены постоянные магниты, взаимодействующие с вращающимся магнитным полем.
Во всем этом многообразии вам предстоит разбираться самостоятельно с неизвестной конструкцией. Здесь большую помощь может оказать техническое описание или шильдик на корпусе.
Я же дальше рассматриваю только две наиболее распространенные схемы запуска АД в работу.
Расчет тока электродвигателя
Расчет номинального и пускового тока электродвигателя по мощности можно произвести с помощью нашего онлайн калькулятора:
Расчет номинального тока двигателя производится по следующей формуле:
Iном=P/√3Ucosφη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Расчет пускового тока электродвигателя производится по формуле:
Iпуск=Iном*K
К — Кратность пускового тока, данная величина берется из паспорта электродвигателя, либо из каталожных данных (в приведенном выше онлайн калькуляторы кратность пускового тока определяется приблизительно исходя из прочих указанных характеристик электродвигателя).
Принцип работы
Однофазным асинхронным двигателем называют машину, имеющую лишь одну обмотку на статоре, которая питается всего лишь от одной фазы. На самом деле обмоток даже в самой простой конструкции две, однако вторая выступает в качестве вспомогательной и работает исключительно при запуске двигателя, отключаясь в процессе. Таким образом пусковая обмотка придаёт ротору необходимый импульс, выводя систему из равновесия — это наиболее простой и распространённый способ столкнуть его.
Пусковая обмотка также отличается от рабочей размерами — обычно в ней вдвое меньше пазов. Как и в двухфазных системах, обе обмотки расположены друг относительно друга под прямым углом. Это позволяет генерировать необходимое усилие при старте работы, затем пусковая фаза отключается, и дальше двигатель поддерживает работу исключительно как однофазный.
Конструкция машины имеет ротор и статор причём первый должен постоянно вращаться, а второй — оставаться неподвижным. Это нужно для генерации магнитного поля, которое будет изменяться со временем. Именно на статоре располагаются обмотки, в то время как ротор своим вращением обеспечивает работу всего механизма. В однофазном двигателе устанавливается один из двух типов роторов:
- короткозамкнутый — также известный как “беличье колесо”. Он состоит из ряда алюминиевых стержней, замкнутых при помощи колец на торцах;
- цилиндрический — полый внутри, он представляет собой пустой цилиндр.
Отметим, что при вращении ротора без использования пусковой обмотки он попадает в пронизывающий магнитный поток, который генерируется пульсирующим полем. Если же система находится в состоянии покоя, то ротор не запустится в принципе, поскольку суммарный вращательный момент равен нулю, а обе силы Ампера, действующие на ротор, полностью друг друга компенсируют.
Ситуация меняется, если ротор толкают — она начинает двигаться в направлении стартового толчка. Начинает работать закон электромагнитной индукции, вследствие чего система генерирует соответствующие токи в направлении толчка. Однако возникает вопрос — от чего зависит его направление?
Для этого нужно учитывать два фактора:
- размещение пусковой обмотки относительно ротора;
- сдвиг тока по фазе относительно рабочей обмотки.
Если оба фактора удовлетворяют показателям системы, то их совместного действия будет достаточно для генерации пульсирующего и вращающегося магнитного поля. Это и приводит двигатель в движение, после чего пусковая фаза отключается, и дальше он работает лишь на одной — её достаточно для поддержания заданной скорости вращения.
Смещение в большинстве случаев производится при помощи специального конденсатора, встроенного в систему. Подключённый с пусковой обмоткой в последовательной цепи, он создаёт сдвиг фаз, равный 90 градусам. С технической точки зрения оператор машины должен нажать на кнопку выключателя, подающего питание к цепи, и отпустить её только в тот момент, когда обороты станут равно соответствующему номиналу, указанному в данной частоте цепи.
Таким образом для конденсаторного пуска реверс осуществляется при создании условия, при которых толчок, запускающий ротор, производится в обратном направлении, нежели в обычных условиях. Добиться этого можно, если правильно чередовать фазы в обеих обмотках, что требует тонкой настройки. Для этого требуется переключить между собой пусковую и рабочую обмотки, чтобы изменить общую полярность подключения. Выполнить подобную процедуру можно и вручную, просто сменив выведенные наружу клеммы. Чтобы понять, какая из них к какой обмотке относится, используйте мультиметр — меньшее активное сопротивление, по которому и получится найти рабочую.
По какому принципу работает двигатель
С помощью влияния переменного электрического тока в статоре возникает магнитное поле. Его можно рассматривать как два отдельных поля, амплитуда и частота которых одинакова, а вот направления разные.
Два магнитных поля, которые возникли в статоре двигателя, воздействует на ротор так, что тот начинает вращаться и приводит двигатель в работу. Вращение начинается благодаря тому, что поля статора имеют разные направления. Если пусковой механизм отсутствует, то есть нет вспомогательной обмотки, ротор никогда не начнет движение.
Если ротор начал работу, вращаясь в одну из сторон, направление он может поменять только в случае вмешательства извне.
Расчет коэффициента мощности электродвигателя
Онлайн расчет коэффициента мощности (cosφ) электродвигателя
Расчет cosφ (косинуса фи) двигателя производится по следующей формуле:
cosφ=P/√3UIη
- P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
- U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
- I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
- η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);
Какой вред от пускового тока?
Пусковой ток – это проблема. Это –
- перегрузка питающей сети, приводящая к нагреву (вплоть до отгорания контактов) и проседанию напряжения;
- чрезмерный износ, перегрузка и перегрев двигателя, у некоторых производителей среди параметров двигателя указывается максимальное количество пусков в час или в сутки – именно из-за перегрева;
- износ и перегрузка механического привода (подшипники, редукторы, ремни), особенно обладающего большим моментом инерции,
- помехи, вызванные включением контакторов, которые передаются не только по проводам, но и через электромагнитное поле,
- проблемы с технологией – многие процессы нельзя начинать резко.
От пускового тока перегружается всё, и момент пуска становится в тягость вcем участникам процесса. Именно в этот критический момент может проявиться “слабое звено”. Кроме того, многие участники электропитания, работающие в этой сети, испытывают проблемы – например, лампочки снижают яркость из-за снижения напряжения, а контроллеры могут зависнуть из-за мощной помехи.
И в то же время пусковой ток – это проблема, от которой никуда не деться, если сразу подавать на двигатель номинальное питание и не использовать специальные методы.
Поэтому разберём,
Трехфазная сеть
Трехфазные двигатели
Схема включения трехфазных электродвигателей по звезде
Основные схемы включения трехфазных электродвигателей: звезда и треугольник. Для их работы предпочтительнее будет «треугольник». Формула расчета: Сраб.=k*Iф / U сети. Теперь немного подробнее.
- Iф – значение тока, которое потребляет электродвигатель в номинальном режиме. Проще всего посмотреть на нем самом. Иногда, если есть возможность, измерить клещами.
- Uсети – с этим все понятно. Это напряжение питания – 220 вольт.
- K – специальный коэффициент. Для треугольника он равен 4800, а для звезды – 2800. Он просто подставляется к формуле расчета.
В некоторых случаях, а именно когда пусковые характеристики достигают значительных величин (пуск двигателя под нагрузкой), необходимо использовать дополнительные, пусковые, конденсаторы для запуска электродвигателя. Их параметры считают так: берут рабочий элемент и умножают его значения на 2,5…3. Также рабочее напряжение этой запчасти должно быть минимум в 1,5 раза выше сетевого.
Стоит отметить, что при включении трехфазного двигателя к 220в происходит потеря мощности до 30% и с этим ничего не сделать.
Однофазные двигатели
Также существует большая группа асинхронных машин, изначально рассчитанных на работу в однофазной сети. Их, как правило, подключают на 220 вольт, но это не значит, что все так гладко. Хотя они, в отличие от трехфазников, момент не теряют, однако момент пусковой у них достаточно низок, а значит конденсаторы необходимы и для этих двигателей.
На поверку, это двухфазные электродвигатели: у них две обмотки, смещенные на 90 градусов друг относительно друга. И если подать 220в с таким же смещением, то никакой фазосдвигатель для запуска не нужен!
Но такого не происходит и поэтому для его запуска на 220 нужен пусковой элемент
Один конденсатор рабочий, для постоянного подключения, другой – пусковой. Он отключается после разгона электродвигателя до расчетных значений и больше схеме 220 вольт не нужен. В качестве приборов запуска на 220в применяются только в приводах до 1 кВт. Дело в том, что при более высоких мощностях цена на необходимые фазосдвигатели настолько высока, что их применение экономически невыгодно.
Что касается расчета основной емкости, то можно пользоваться такой зависимостью: на каждые 100 ватт берется 1 мкФ. Дальше – дело арифметики уровня второго класса. Значение пускового прибора – в 2…2,5 раза выше.
Обратите внимание! Это не значение отдельного конденсатора, а общей емкости Сраб+Спуск.!
Для 220 вольт необходимо брать элементы запуска с напряжением хотя бы на 450 вольт, так как на них напряжение отличается от сетевого 220в!