Схема пуска и торможения противовключением асинхронного двигателя

Классическое динамическое торможение

Эффективность такого режима работы зависит от расчета и значения следующих параметров:

  1. Величина тока, который подается через параллельную цепь на обмотки статора. Чем выше этот показатель, тем больше момент торможения,
  2. Величина сопротивления, которое вводится в цепь ротора. Чем выше по расчету сопротивление, тем быстрее тормозится двигатель,
  3. Величина магнитной движущей силы (МДС). Иногда ее называют ампер витками, поскольку расчет ведется по формуле F = I×W, где I – величина тока, а W – количество витков.

Обмотка статора при этом может подключаться как минимум пятью разными способами:

  1. Треугольником,
  2. Треугольником с закороченными фазами,
  3. Звездой,
  4. Звездой с закороченным нулем,
  5. Звездой с закороченными двумя фазами.

В каждом случае на основании векторной диаграммы ведется расчет МДС, тормозного сопротивления и напряжения цепи.

Электрические схемы

Режим работы – прямой пуск электродвигателя, реверсивный (1 фидер).

Шкаф управления асинхронным двигателем предназначен для местного, дистанционного или автоматического управления одним электродвигателем (пуск электродвигателя, реверс и отключение вращающегося электродвигателя), работающим в продолжительном, кратковременном или повторно-кратковременном режимах.Реверс – это изменение направления вращения ротора.

Для реверса необходимо изменить направление вращения магнитного поля статора, что в трехфазных асинхронных двигателях достигается переменой мест двух любых проводов на клеммах трехфазной сети.Ящик имеет местную индикацию состояния работы и возможность для подключения дистанционного управления и дистанционной индикации состояния работы фидера.

Описание и свойства прямого пуска асинхронного электродвигателя

В зависимости от конструкции ротора (короткозамкнутый или фазный), мощности двигателя, характера нагрузки возможны различные способы пуска: прямой пуск, пуск с использованием дополнительных сопротивлений, пуск при пониженном напряжении и др.

Пуск двигателя непосредственным включением на напряжение сети обмотки статора называется прямым пуском. Схема прямого пуска приведена на однолинейной электрической схеме. При включении контактора в первый момент скольжение s = l, а приведенный ток в роторе и равный ему ток статора

максимальны. По мере разгона ротора скольжение уменьшается и поэтому в конце пуска ток значительно меньше, чем в первый момент. В серийных двигателях при прямом пуске кратность пускового тока kI = IП / I1НОМ = ( 5,…,7), причем большее значение относится к двигателям большей мощности.

Значение пускового момента находится при s = 1:

Для серийных двигателей кратность пускового момента МП/ МНОМ = (1.0,…,1.8).

Приведенные данные показывают, что при прямом пуске в сети, питающей двигатель, возникает бросок тока, который может вызвать настолько значительное падение напряжение, что другие двигатели, питающиеся от этой сети, могут остановиться.

С другой стороны, из-за небольшого пускового момента при пуске под нагрузкой двигатель может не преодолеть момент сопротивления на валу и не тронется с места.

В силу указанных недостатков прямой пуск можно применять только у двигателей малой и средней мощности (примерно до 50 кВт).

График изменения тока и момента при пуске асинхронного двигателя с короткозамкнутым ротором.

Динамическое торможение асинхронного двигателя

Осуществляется путем подачи постоянного тока в статор асинхронного двигателя после отключения статора от сети переменного тока контактором КМ1.

Динамическое торможение можно осуществлять как для двигателя с короткозамкнутым ротором, так и для двигателя с фазным ротором. Причем у двигателя с фазным ротором сопротивление в цепь ротора может быть включено или ротор замкнут накоротко без сопротивлений.

Схема динамического торможения асинхронного двигателя.

Тормозная характеристика асинхронного двигателя при динамическом торможении: кривая 7 — электромеханическая характеристика, кривые 4-6 механические характеристики.

При подаче постоянного тока в две фазы обмотки статора в воздушном зазоре асинхронного двигателя создается постоянное магнитное поле. Когда ротор попадает в это поле, в нем наводится постоянная ЭДС, направленная навстречу ЭДС вращающего магнитного поля, и ротор притормаживается.

При этом торможении двигатель работает в режиме генератора, независящего от сети переменного тока и преобразует кинетическую энергию движущихся частей электропривода в электрическую энергию, которая рассеивается в виде тепла в цепи ротора.

Процессом динамического торможения можно управлять, то есть изменять время торможения двумя способами. У асинхронных электродвигателей с короткозамкнутым ротором можно изменять тормозной ток. Для двигателей с фазным ротором можно изменять величину добавочного сопротивления в цепи ротора.

Недостатком динамического торможения является несимметрия магнитного поля при торможении, так как постоянный ток попадает только в две фазы. Несимметрия приводит к вибрации машины во время торможения.

В машинах мощностью более 100 кВт, чтобы избежать вибрации, с помощью усложнения силовой схемы подают постоянный ток во все три фазы. Но это очень усложняет и удорожает привод.

Источник

После отключения от сети электродвигатель продолжает движение по инерции. При этом кинетическая энергия расходуется на преодоление всех видов сопротивлений движению. Поэтому скорость электродвигателя через промежуток времени, в течение которого будет израсходована вся кинетическая энергия, становится равной нулю.

Все способы торможения электродвигателей можно разделить на два основных вида: механическое и электрическое.

При механическом торможении кинетическая энергия преобразуется в тепловую, за счет которой происходит нагрев трущихся и прилегающих к ним частей механического тормоза.

При электрическом торможении кинетическая энергия преобразуется в электрическую и в зависимости от способа торможения двигателя либо отдается в сеть, либо преобразуется в тепловую энергию, идущую на нагрев обмоток двигателя и реостатов.

Наиболее совершенными считают такие схемы торможения, при которых механические напряжения в элементах электродвигателя незначительны

Схемы динамического торможения асинхронных двигателей

Для управления моментом при динамическом торможении асинхронным двигателем с фазным ротором по программе с заданием времени используются узлы схем, приведенные н а рис. 1, из которых схема р и с. 1, а применяется пр и наличии сети постоянного тока, а схема рис. 1, б — при отсутствии ее.

В качестве тормозных резисторов в роторе используются пусковые резисторы R1, включение которых в режиме динамического торможения производится отключением контакторов ускорения, показанных в рассматриваемых узлах схем условно в виде одного контактора КМ3, команда на отключение которого подается блокировочным контактом линейного контактора КМ1.

Рис. 1 Схемы управления динамическим торможением асинхронных двигателей с фазным ротором с заданием времени при наличии и отсутствии сети постоянного тока

Как происходит торможение машины двигателем

Особенности конструкции ДВС заключаются в том, что для этих агрегатов более естественной является работа на холостом ходу. При нажатии на акселератор водитель повышает количество оборотов мотора, но как только он отпускает педаль, обороты падают. Если такие действия совершаются во время движения автомобиля, то при падении оборотов двигателя снижается и скорость машины. Именно такой процесс и называют торможение двигателем. Метод снижения скорости авто без использования тормозной систем это важный навык, позволяющий предотвратить блокировку колес в ходе торможения на скользкой дороге, а также избежать аварийной ситуации при неожиданной поломке элементов системы.

Каким образом торможение двигателем способствует снижению скорости движения машины? Этот метод основан на сопротивлении силового агрегата инерционным нагрузкам, направленным на повышение количества оборотов коленвала. Процесс происходит в тот момент, когда авто с включенной передачей едет на скорости, а подача топливной смеси снижается или прекращается вовсе.

Падение объема топлива, поступающего в ДВС, приводит к уменьшению количества энергии, передаваемой мотором на трансмиссию, которая в свою очередь начинает передавать двигателю инерцию вращающихся колес. Это приводит к падению оборотов коленвала, и машина теряет скорость.

Рассмотрим особенности процесса торможения двигателем. Прежде всего следует отметить, что в данном случае не всегда можно обеспечить ощутимое снижение скорости авто. При нажатии на акселератор увеличивается подача топливной смеси, что приводит к повышению количества оборотов коленвала (двигатель «раскручивается»). При отпускании педали газа обороты снижаются.

Если упрощенно рассматривать работу трансмиссии, то можно отметить, что функция КПП состоит в передаче и распределении крутящего момента на колеса. Другими словами, коробка переключения скоростей в зависимости от установленной передачи передает определенное количество энергии мотора.

Советуем изучить — Условия эксплуатации электродвигателей

При движении на пониженных передачах (с 1-й по 3-ю) колесам передается максимальное усилие, но машина не сможет набрать наиболее высокую скорость. После включения повышенных передач авто может ехать более быстро, но энергия ускорения будет снижаться, поскольку КПП уже не может передавать максимальное усилие от двигателя, как на первых передачах.

На повышенных передачах автомобиль ускоряется гораздо слабее, а в большинстве ситуаций машина может только поддерживать достигнутый показатель скорости. На 4-й, 5-й и 6-й передачах начинают работать более существенные силы инерции, поэтому сопротивление мотора и трансмиссии минимизируется.

Таким образом, хорошая динамика разгона может обеспечиваться только при езде на пониженных передачах. Именно в такие моменты, отпуская педаль газа, можно обеспечить значительное сопротивление инерционному движению. Если же бросить газ на повышенных передачах, то замедление авто окажется не таким ощутимым, поскольку сопротивление инерции будет низким.

Трёхфазные асинхронные двигатели: методы торможения

Главная страница » Трёхфазные асинхронные двигатели: методы торможения

Значительное число приводных систем используются при естественном замедлении работы двигателей в процессе остановки. Время, затрачиваемое на остановку ротора, измеряется исключительно инерционным моментом и моментом сопротивления вращению. Между тем нередко эксплуатация систем требует сокращать время остановки вала мотора и в этом случае электрическое торможение хода электродвигателя видится простым и эффективным решением. По сравнению устройствами, где применяются механический или гидравлический способы, электрическое торможение двигателей имеет явные преимущества в плане устойчивости действия и экономичности применения.

Принцип торможения противотоком

Мотор отключается от электросети, и пока ротор продолжает вращаться, вновь подключается противофазой. Такая система создаёт эффективный момент блокировки, обычно превышающий пусковой момент.

Между тем, этот эффективный момент торможения должен быть быстро нивелирован, чтобы двигатель после остановки не вращался в противоположном направлении. Несколько устройств контроля и автоматики привлекаются для обеспечения замедления вращения вала электродвигателя до его полной остановки:

  • датчики остановки фрикциона,
  • датчики центробежного останова,
  • хронометрические приборы,
  • реле частоты,
  • реле напряжения ротора (для двигателей с фазным ротором) и т. д.

Торможение двигателя с короткозамкнутым ротором

Прежде чем выбирать систему противотока для асинхронного мотора с КЗ ротором, важно обеспечить устойчивость двигателя к противоточному способу с учётом требуемой нагрузки. Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора

Помимо механических напряжений, этот процесс подвергает ротор воздействию высоких тепловых нагрузок, так как энергия, выделяемая при каждой операции, рассеивается в теле ротора.

Тепловое напряжение на противотоке в три раза больше, чем при наборе скорости вращения. Здесь пики тока и крутящего момента заметно выше, если сравнивать с моментом пуска.

ТЕПЛОВОЕ


Принцип методики противоточного воздействия на схему электродвигателя с целью быстрого замедления хода с последующей остановкой. Слева — нормальный рабочий цикл. Справа — цикл замедления и останова

Поэтому для обеспечения плавного останова двигателя системой противотока, как правило, последовательно с каждой фазой статора устанавливают резистор. Благодаря такому добавлению, при переключении уменьшается крутящий момент и ток, до значений, равных тем, что отмечаются на статоре в режиме пуска.

Однако противоточная система торможения имеет ряд серьёзных недостатков. Поэтому этот способ для асинхронных двигателей с короткозамкнутым ротором используется в редких случаях и преимущественно на маломощных моторах.

Противоточное торможение на двигателях с фазным ротором

Чтобы ограничить ток и крутящий момент, прежде чем статор будет переключен на противоточный ход, крайне важно использовать резисторы ротора, используемые для запуска. При этом следует периодично добавлять дополнительную резистивную секцию торможения

При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно

При этом следует периодично добавлять дополнительную резистивную секцию торможения. При правильно подобранном значении роторного резистора, регулировать тормозной момент до требуемого значения несложно.

Момент переключения тока даёт напряжение ротора практически в два раза большее, чем когда ротор находится в состоянии покоя, что иногда требует особых мер при изоляции.

ТЕРМАЛЬНОЕ


Принцип противоточной электрической блокировки на моторах с фазным ротором. Слева — нормальный режим работы. Справа — замедление с остановом

Как и в случае с силовыми двигателями, цепь ротора выделяет значительное количество энергии. Вся выделенная энергия полностью рассеивается на резисторах (за исключением небольших потерь).

Двигатель может быть остановлен автоматически одним из вышеупомянутых устройств контроля. Например, с помощью реле напряжения или частоты в цепи ротора. С помощью схемы противотока удаётся поддерживать ведущую нагрузку с умеренной скоростью.

Однако характеристика крайне неустойчива (значительные колебания скорости по отношению к малым изменениям крутящего момента).

Асинхронный двигатель и его работа


Очевидно, что режимы функционирования электродвигателей асинхронного типа напрямую зависят от их конструкции и общих принципов работы. Этот силовой агрегат совмещает в себе два ключевых компонента:

  1. Неподвижный статор. Пластинчатый цилиндр, в продольные пазы на внутренней поверхности которого укладывается проволочная обмотка,
  2. Вращающийся ротор. Совмещенный с валом сердечник (магнитопровод), который содержит прутковую обмотку на внешней стороне.

За счет различных частот вращения статора и ротора между ними возникает ЭДС, которая приводит вал в движение. Стандартное значение этого параметра может достигать 3000 об/мин, что требует определенного усилия для ее остановки. Из логических соображений можно заключить, что раз стартует двигатель за счет ЭДС, то и останавливать его тоже нужно электродинамическим путем.

Торможение самовозбуждением

Схема торможения самовозбуждением

Этот вариант реализуется за счет подключения обмоток статора к параллельной конденсаторной батарее или мосту (расчет емкости придется вести). Когда двигатель отключается от сети и должен наступить режим выбега, угасающее магнитное поле начинает питать конденсаторы, а через них возвращается обратно в обмотку, создавая тормозной момент.

Как можно видеть, на практике используется целая гамма специфических режимов работы асинхронных двигателей, которыми можно добиться быстрой и точной его остановки. При частых пусках и остановках динамическое, рекуперативное, реверсное (на пускателях) или конденсаторное торможение (через расчет моста или батареи) могут повысить эффективность работ оборудования и снизить потери времени.

Торможение двигателей электронным и сверхсинхронным способом

Эффект электронного торможения достигается относительно просто с помощью регулятора скорости, оснащенного тормозным резистором.

Асинхронный двигатель действует как генератор. Механическая энергия рассеивается на ограничительном резисторе без увеличения потерь в самом двигателе.

Эффект торможения проявляется, когда двигатель достигает верхней точки синхронной скорости с переходом на более высокие значения.

Здесь фактически инициируется режим асинхронного генератора и развивается тормозной момент. Возникающие при этом потери энергии восстанавливаются электросетью.

Подобный режим работы проявляется на двигателях подъёмников при спуске груза с номинальной скоростью. Тормозной момент полностью уравновешивается крутящим моментом от нагрузки.

За счёт этого равновесия удаётся тормозить не ослаблением скорости, а выводом двигателя в режим работы на постоянной скорости.

Для варианта эксплуатации моторов с фазным ротором, все или часть резисторов ротора должны быть накоротко замкнутыми, чтобы двигатель не развивал движение значительно выше номинальной скорости.

Сверхсинхронная система функционально видится идеальной для ограничения движения под нагрузкой, потому что:

  1. Скорость остаётся стабильной и практически не зависит от вращающего момента,
  2. Энергия восстанавливается и возобновляется в сети.

Тем не менее, сверхсинхронное торможение электродвигателей поддерживает только одну скорость вращения, как правило, номинальное вращение.

На частотно-регулируемых двигателях используются сверхсинхронные схемы, благодаря которым изменяется скорость вращения вала от верхнего значения к нижнему значению.

Сверхсинхронное торможение легко достигается с помощью электронного регулятора скорости, который автоматически запускает эту систему при понижении частоты.

Другие тормозные системы

Редко, но всё-таки встречаются системы однофазного торможения. Эта методика включает питание двигателя между двумя фазами сети и подключает незанятый терминал к одному из двух других сетевых подключений.


Вариант остановки простым реверсивным переключением — реверс поля вращения, образованного обмотками статора

Тормозной момент ограничивается 1/3 максимального крутящего момента двигателя. Этой системой невозможно остановить мотор на полной нагрузке.

Поэтому такая схема традиционно дополняется противоточным методом. Вариант однофазной блокировки характеризуется значительным дисбалансом и высокими потерями.

Также применяется торможение электродвигателей ослаблением вихревых токов. Здесь работает принцип, аналогичный тому, что используется на промышленных транспортных средствах в дополнение к механическому торможению (электрические редукторы).

Механическая энергия рассеивается в редукторе скорости. Замедление и остановка электродвигателя контролируется простым возбуждением обмотки. Выраженный недостаток этого метода — значительное увеличение инерции.

Видео торможения вала двигателя динамическим способом

Что такое динамическое торможение?

На этом месте может возникнуть закономерный вопрос: зачем что-то придумывать, если можно отключить двигатель от электросети, и он сам остановится? Это бесспорно так, но учитывая высокую частоту вращения и массо-центровочные характеристики, пройдет некоторое время до того момента, когда ротор полностью остановится. Этот период называется свободным выбегом и каждый в детстве его наблюдал, запуская простую юлу. Тем не менее, если работа оборудования предполагает частое использование пускателей, то такой режим приводит к очевидной потере времени.

Для быстрой остановки используются режимы торможения, которые предполагают трансформацию механической (в данном случае – кинетической) энергии искусственным путем. Все выделяют два основных вида торможения, которые подразделяются затем на подвиды:

  1. Механическое. Вал двигателя сообщается физически с тормозными колодками, вследствие чего возникает трение, быстрая остановка и выделение теплоты,
  2. Электрическое. Асинхронный двигатель останавливается за счет преобразования цепи подключения, вследствие чего механическая энергия трансформируется сперва в электрическую. Далее возможны два варианта ее израсходования, зависящие от схемы: либо избыток электричества выбрасывается в резервную цепь сети, либо трансформируется в тепло, за счет нагрева обмоток и сопротивления.

Динамическое торможение асинхронного двигателя относится к электрическому типу, так как в процессе обмотка статора отключается от сети с переменным током (две из трех фаз) и переводится в замкнутую цепь постоянного тока. При этом магнитное поле в статоре преобразуется из вращающегося в неподвижное. В роторе по-прежнему будет наводиться ЭДС, но момент будет направлен в обратную сторону, что приводит к торможению.

Классическая схема, как можно видеть на иллюстрации, предусматривает отключение от сети одной фазы контактором КМ1. При этом две другие фазы за счет контактора КМ2 переключаются в цепь с постоянным током через диодный мост.

Главным преимуществом такого способа торможения является возможность плавно контролировать тормозящий момент (за счет изменения напряжения или сопротивления) и осуществлять точную остановку.

Торможение двигателей постоянного тока

Виды электрического торможения. Электрические двигатели, как правило, используют не только для вращения механизмов, но и для их торможения. Электрическое торможение позволяет быстро остановить механизм или уменьшить его частоту вращения без применения механических тормозов.

Различают три вида электрического торможения двигателей постоянного тока: 1) рекуперативное торможение — генераторное торможение с отдачей электрической энергии в сеть; 2) динамическое или реостатное торможение — генераторное торможение с гашением выработанной энергии в реостате, подключенном к обмотке якоря; 3) электромагнитное торможение — торможение противовключением.

Во всех указанных режимах электромагнитный момент М воздействует на якорь в направлении, противоположном и, т. е. является тормозным.

Рекуперативное торможение. Двигатель с параллельным в озбуждением переходит в режим рекуперативного торможения при увеличении его частоты вращения и выше п0 = U/ceФ. В этом случае ЭДС машины становится больше напряжения сети и ток согласно (8.80) изменяет свое направление, т. е. двигатель переходит в генераторный режим. В этом режиме машина создает тормозной момент, а выработанная электрическая энергия отдается в сеть и может быть полезно использована.

В машине с параллельным возбуждением (рис. 8.71, а) механические характеристики генераторного режима являются продолжением механических характеристик двигательного режима в область отрицательных моментов.

Рис. 8.71. Схема и механические характеристики машины постоянного тока в двигательном и генераторном режимах.

Динамическое торможение. При этом виде торможения двигателя с параллельным возбуждением обмотку якоря отключают от сети и присоединяют к ней реостат Rдо6 (рис. 8.72, а) При этом машина работает как генератор, создает тормозной момент, но выработанная электрическая энергия бесполезно гасится в реостате. Регулирование тока Ia = Е/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб, подключенного к обмотке якоря.

Рис. 8.72. Схема и механические характеристики двигателя с параллельным возбуждением в режиме динамического торможения.

Электромагнитное торможение. В этом режиме изменяют направление электромагнитного момента М, сохраняя неизменным направление тока из сети, т. е. момент делают тормозным. Последнее осуществляют так же, как и при изменении направления вращения двигателя — путем переключения проводов, подводящих ток к обмотке якоря (рис. 8.76, а) или к обмотке возбуждения. Чтобы ограничить значение тока в этом режиме, в цепь обмотки якоря вводят добавочное сопротивление Rдоб. Регулирование тока Ia = (U + Е)/(ΣRa + Rдоб), т. е. тормозного момента М, осуществляют путем изменения сопротивления Rдоб или ЭДС Е (тока возбуждения Iв). Механические характеристики в этом режиме для двигателей с параллельным и последовательным возбуждением показаны на рис. 8.76, б и в.

Рис.8.76. схема и механические характеристики двигателей в режиме электромагнитного торможения.

21.Универсальные коллекторные двигатели — это электродвигатели малой мощности последовательного возбуждения с секционированной обмоткой возбуждения, благодаря чему они могут работать как на постоянном, так и на переменном стандартных напряжениях примерно с одинаковыми свойствами и характеристиками. Такие электродвигатели используют для привода маломощных быстроходных устройств и многих бытовых приборов. Они допускают простое, широкое и плавное регулирование скорости.

По своему устройству эти двигатели отличаются от двигателей постоянного тока общего применения конструкцией статора, магнитную систему которого собирают из топких изолированных друг от друга листов электротехнической стали с выступающими полюсами, на которых размещают по две секции обмотки возбуждения. Эти секции соединяют последовательно с якорем и располагают по обе стороны от его выводов, что снижает радиопомехи от ценообразования на коллекторе под щетками, которое при питании двигателя от сети переменного напряжения особенно усиливается из-за существенного ухудшения условий коммутации.

Источник

Торможение асинхронного двигателя противовключением

При торможении противовключением изменяют порядок чередования фаз на статоре электродвигателя.

Тормозная характеристика асинхронного двигателя при торможении противовключением.

Допустим двигатель работал при моменте Mс в точке a естественной механической характеристики. В момент изменения порядка чередования фаз происходит бросок тока, и двигатель переходит работать в точку a’. Затем скорость двигателя начинает снижаться до нуля.

Отрезок a’b – участок тормозной характеристики асинхронного двигателя в режиме противовключения. В точке b статор двигателя нужно обязательно отключить от сети, иначе произойдет реверс.

Для крановых механизмов можно использовать еще один способ торможения противовключением. Он называется силовой спуск. Этот способ торможения осуществляется под действием производственного механизма, когда двигатель включается на подъем, а груз опускается под действием собственной силы тяжести. Этот режим можно выполнять только на искусственной реостатной характеристике с введенными сопротивлениями в цепь ротора.

3.1. Схема пуска двигателя постоянного тока с параллельным возбуждением по принципу времени.

Эта схема (рис. 8, a) содержит кнопки управления SB1(пуск) и SB2(останов) двигателя, линейный контактор КМ1, обеспечивающий подключение двигателя к сети, и контактор ускорения КМ2 для выключения (шунтирования) пускового резистора RД. В качестве датчика времени в схеме использовано электромагнитное реле времени КТ. При подключении схемы к источнику питания напряжением U происходит возбуждение двигателя и срабатывает реле КТ, размыкая свой размыкающий контакт в цепи катушки контактора КМ2 и подготавливая двигатель к пуску.

Рис. 8. Схема пуска двигателя по принципу времени (а), характеристики двигателя (б) и кривые переходного процесса (в)

Пуск двигателя начинается после нажатия кнопки SB1, в результате чего получает питание контактор КМ1, который своим главным силовым контактом подключает двигатель к источнику питания. Двигатель начинает разбег с резистором RД в цепи якоря, с помощью которого ограничивается пусковой ток двигателя. Одновременно замыкающий блок-контакт контактора КМ1 шунтирует кнопку SB1, и она может быть отпущена, а размыкающий блок-контакт КМ1 разрывает цепь питания катушки реле времени КТ. Через интервал времени ∆tк. т после прекращения питания катушки реле времени, называемый выдержкой времени, размыкающий контакт КТ замкнется в цепи катушки контактора КМ2, последний включится и главным контактом закоротит пусковой резистор RД в цепи якоря. Таким образом, при пуске двигатель в течение времени ∆tк. т разгоняется по искусственной характеристике 1 (рис. 8, б), а после шунтирования резистора RД — по естественной 2. Величина сопротивления резистора RД выбрана таким образом, что в момент включения двигателя ток I1, в цепи и соответственно момент М1, не превосходят допустимого уровня.

Из за большого объема этот материал размещен на нескольких страницах: 6

Способы электрического торможения электроприводов

Для того чтобы быстро остановить устройство или обеспечить постоянную скорость вращения используют электрические способы остановки. В зависимости от схемы включения тормозные режимы подразделяют на:

  • противовключения;
  • динамический;
  • рекуперативный.

Противовключения

Режим противовключения применяется при необходимости быстрой остановки механизма. Представляет собой смену полярности на обмотке якоря двигателя постоянного тока или переключения двух фаз на обмотках асинхронного электродвигателя.

В этом случае ротор вращается в противоположном направлении магнитного поля статора. Вращение ротора замедляется. При скорости вращения близкой к нулю с реле контроля скорости поступает сигнал, отключая механизм от сети.

На нижеприведенном рисунке представлена схема противовключения асинхронного электромотора.

После переключения обмоток возникает повышенное действующее напряжение и увеличение тока. Для его ограничения, в обмотки ротора или статора устанавливают дополнительные резисторы. Они ограничивают токи в обмотках в режиме торможения.

Динамическая остановка электропривода

Этот способ применяют на асинхронных машинах, подключенных к сети переменного тока. Он заключается в отключении обмоток от сети переменного напряжения и подачи постоянного тока на обмотку статора.

На вышеприведенном рисунке представлена схема торможения трехфазного двигателя постоянным током.

Подача постоянного напряжения осуществляется с помощью понижающего трансформатора для динамического торможения. Пониженное переменное напряжение преобразуется в постоянное диодным мостом и подается на статорную обмотку. Для торможения электромотора может применяться дополнительный источник постоянного тока.

При этом ротор может быть выполнен в виде «беличьей клетки» или ее обмотку подключают к добавочным резисторам.

Постоянное напряжение создает неподвижный магнитный поток. При вращении ротора в нем наводится ЭДС, т.е. электромотор переходит в режим генератора. Возникающая электродвижущая сила рассевается на обмотке ротора и добавочных резисторах. Создается тормозной момент. В момент остановки механизма постоянное напряжение отключается по сигналу реле скорости.

Механизмы, где применяется электродвигатель с самовозбуждением, динамическую остановку выполняют с помощью подключения конденсаторов. Они соединяются треугольником или звездой.

Схема приведена на нижеприведенном рисунке.

На выбеге остаточная энергия магнитного поля переходит в заряд конденсаторов, а затем она питает обмотку статора. Возникающий тормозной эффект останавливает механизм. Конденсаторная батарея может быть подключена постоянно или подсоединяться в момент отключения от сети. Такая схема получила название “конденсаторное торможение асинхронного двигателя”.

Если необходимо быстро остановить двигатель, то после отключения от сети, замыкают контакты накоротко без гасящих резисторов. При соединении обмоток закорачиванием в них возникают большие токи. Для уменьшения токов к обмоткам подключают токоограничивающие резисторы.

На нижеприведенном рисунке представлена схема с токоограничивающими резисторами.

Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока

Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения . При увеличении rрегчас­тота вращения растет. Зависимость частоты вращения от тока воз­буждения выражается регулировочной характеристикой двигателя n=f(IВ) при и .

Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к рос­ту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря дости­гает значения ,т. е. падение напряжения в цепи яко­ря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax. При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.

При небольшом нагрузочном моменте на валу двигателя мак­симальная частота вращения nmax во много раз превосходит номи­нальную частоту вращения двигателя nном и является недопусти­мой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата  rрег необходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допус­тимого значения.

Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза. Необходимо также следить за надежностью электриче­ских соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота враще­ния может достигнуть опасного значения.
Вид регулировочных характеристик n = f(Ф) зависит от значе­ния нагрузочного момента M2на валу двигателя: с ростом M2 мак­симальная частота вращения nmax уменьшается (рис. 29.5, б).

Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения

Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.

Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуж­дения ток IВ = (0,01 — 0,07)Iа, а поэтому потери в регулировочном реостате невелики.

Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5. Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, иска­жающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: