Генераторный режим работы асинхронной машины.
Если ротор разогнать с помощью внешнего момента (например, каким-либо двигателем) до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдёт в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозным. В генераторном режиме работы скольжение. Генераторный режим асинхронного двигателя используется довольно часто в механизмах с активным моментом: в таком режиме могут работать двигатели эскалаторов метро (при движении вниз), опускании груза в подъёмных кранах, в генераторном режиме также работают двигатели лифтов, в зависимости от соотношения веса в кабине и в противовесе; при этом сочетаются необходимый по технологии режим торможения механизма и рекуперация энергии в сеть с экономией электроэнергии.
Условия самовозбуждения асинхронного генератора.
Для работы асинхронной машины в генераторном режиме требуется источник реактивной мощности, создающий магнитное поле. При отсутствии первоначального магнитного поля в обмотке статора поток создают с помощью постоянных магнитов, либо при активной нагрузке за счёт остаточной индукции машины и конденсаторов, параллельно подключенных к фазам обмотки статора. Асинхронный генератор потребляет реактивный ток и требует наличия в сети генераторов реактивной мощности в виде синхронных машин, синхронных компенсаторов, батарей статических конденсаторов (БСК). Из-за этого, несмотря на простоту обслуживания, асинхронный генератор применяют сравнительно редко, в основном в качестве ветрогенераторов малой мощности, вспомогательных источников небольшой мощности и тормозных устройств.
Тормозные режимы работы асинхронной машины.
Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя.
Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.
67. Трансформаторный режим работы асинхронной машины.Фазорегуляторы. В трансформаторном режиме асинхронная машина работает при s=1 . В этом энергетическом режиме машина является электромагнитным преобразователем и не преобразует электрическую энергию в механическую или обратно. Для работы в трансформаторном режиме используются машины с фазным ротором. При этом между обмотками статора и ротора возможна трансформаторная или автотрансформаторная связь. Фазорегулятор. Конструктивно фазорегулятор – это асинхронная машина с заторможенным фазным ротором, обмотки статора и ротора которой имеют между собой трансформаторную связь и могут поворачиваться относительно друг друга на электрический угол 360 . При повороте ротора относительно статора амплитуда ЭДС на роторе 2 Е не изменится, т. к. ЭДС в фазных обмотках ротора наводится вращающимся полем, а фаза (временной сдвиг между первичным и вторичным напряжением) изменится. Принимая активные и индуктивные сопротивления фазных обмоток ротора равными нулю, можно считать U2= E2 . При повороте ротора относительно статора на угол β изменяется и временной угол между напряжениями статора и ротора на величину рβ.
Ротор относительно статора поворачивается вручную или с помощью привода. Как было сказано выше, на ротор действует пусковой момент, что следует учитывать при расчете самостопорящегося поворотного редуктора ротора фазорегулятора. Промышленность выпускает трехфазные фазорегуляторы серии ФР, ФРО напряжением 220/380 В и мощностью до 18 кВ А.
Два вида электродвигателей переменного тока
Асинхронные двигатели — наивная простота
Ротор то догоняет волну, то слегка отстает, потому что синхронно с ней бежать просто не может. Такое явление назвали «скольжением», догнав бегущее магнитное поле, ротор с беличьей клеткой теряет магнитную индукцию и дальше некоторое время просто скользит по инерции. А когда трение или нагрузка вынуждают его отстать от бегущего поля, он опять «почувствует» в себе изменения силовых линий обгоняющего его поля и снова обретет индукцию, а вместе с этим и силы двигаться.
Асинхронные двигатели
То есть, ротор слегка проскальзывает: то догоняет бегущее равномерно по кругу магнитное поле, то «забывает, зачем бежал» и слегка приотстает, то снова «спохватывается» и опять стремится догнать. Постепенно эти отклонения стабилизируются — в зависимости от трения в подшипниках и величины нагрузки на вал — и асинхронный двигатель начинает работать просто со скоростью вращения, чуть меньшей частоты напряжения на статоре. Эта разница частот и называется частотой скольжения.
Двигатели синхронные: сложное в простом
Для того, чтобы ротор был связан с бегущей волной магнитного поля катушек статора жестким образом, придумали электродвигатель синхронный. А проблема решается просто. В роторе вместо изменяющегося магнитного поля от короткозамкнутых токов беличьей клетки нужно использовать постоянные магниты и их магнитное поле.
Устройство двигателя
Вариантов два. Или это поле от постоянного магнита, закрепленного в роторе, или это поле от электромагнитов, установленных в роторе вместо такого магнита.
Обычный магнит, конечно, проще. Но тогда для стандартного функционирования таких электромоторов нужно, чтобы на них на всех — а используются тысячи электромоторов — магниты были строго одинаковы. Иначе параметры движения будут разными, а магниты еще имеют свойство размагничиваться.
Электромагнит, установленный в роторе двигателя, легче заставить вырабатывать поле нужного качества, но требуется электрический ток для его работы. Такой ток, который называется током возбуждения, в свою очередь нужно где-то брать и как-то на ротор подавать.
Синхронный электродвигатель (или генератор)
1 – ротор, 2 – коллектор возбуждения
Отсюда и происходит некоторое разнообразие конструкций синхронных двигателей. Но важнее всего то, что синхронные двигатели крутят свой вал строго синхронно частоте бегающего по кругу поля катушек статора, то есть скорость их вращения точно равна — или кратна (если обмоток статора больше трех) — частоте переменного тока в питающей сети.
Однако кроме всего прочего, синхронный двигатель обладает свойством полной обратимости. Потому что синхронный электродвигатель — это тот же самый генератор электрического тока, но работающий «в обратную сторону». В генераторе некоторая механическая сила вращает вал с ротором, и от этого в обмотках статора возникает наведенное электрическое напряжение от вращающегося магнитного поля ротора. А отличие синхронного двигателя от генератора в том, что напряжение в катушках статора порождает бегающее по кругу магнитное поле, которое, взаимодействуя с постоянным магнитным полем ротора, толкает его, чтобы ротор тоже вращался.
Только если в генераторе вращению ротора можно механически придать любую скорость, и от этого будет изменяться частота переменного тока, им генерируемого, то в синхронном двигателе такой роскоши нет. Синхронный двигатель вращается со скоростью изменения напряжения в сети, а оно у нас выдерживается строго в 50 герц.
Принцип действия двигателя постоянного тока — Почему он вращается?
Двигатель постоянного тока — это машина которая преобразует электрическую энергию в механическую. То есть, потребляя для своего вращения электрический ток, она приводит во вращение различные устройства. Это могут быть водяной или воздушный насос, стиральная машина или кофемолка. Электродвигателем постоянного тока, разумеется, такой двигатель называется потому, что для его питания используется постоянный электроток. Рассмотреть принцип действия двигателя постоянного тока удобнее всего на небольшой модели. Поскольку, с одной стороны, у модели принцип работы тот же что и у большого двигателя. А с другой стороны, модель рассматривать удобнее. Потому как она маленькая, со всех сторон для взгляда открыта и деталей на ней меньше.
Модель двигателя постоянного тока состоит из ротора и статора. Ротор — это подвижная часть двигателя. Статор — неподвижная (статичная) часть. В данном случае статор двигателя является индуктором, а ротор якорем. То есть, ток питания сети протекает в роторе.
Главной частью статора является магнит. Так как у мы рассматриваем самую простейшую модель двигателя, магнит постоянный и всего один. Магнит находится в верхней части модели. К двум полюсам магнита присоединяются две железные пластины. Пластины присоединяются таким образом, что они образуют с двух сторон модели двигателя два полюса — северный и южный. То есть, пластины служат продолжением полюсов магнита. Между полюсами находится ротор двигателя.
На ротор наматывается катушка из медного провода. Два вывода катушки подсоединяются к двум контактным пластинкам-ламелям. Эти пластинки имеют полусогнутую форму и располагаются на цилиндре. Причем, цилиндр является изолятором. То есть, обе пластинки изолированны друг от друга. Цилиндр с пластинками является коллектором двигателя постоянного тока. Потому подобные виды двигателей постоянного тока называются коллекторными. Обычно под коллектором понимается устройство что-либо собирающее. Данный коллектор закрепляется на одной оси с ротором. Иначе говоря, при вращении ротора, вращается также и коллектор.
С ламелями соприкасаются пружинные щетки. В свою очередь, с щетками соединены контактные площадки, на которые подается питание постоянным током. В результате, когда на контакты подается питание, ротор начинает вращаться. То есть, при подключении питания, по катушке ротора начинает течь постоянный ток. Иначе говоря, ротор становится электромагнитом. У ротора появляются два полюса, так же как и у статора. Соответственно, магнитные полюса статора притягивают противоположные полюса ротора. Ротор разворачивается становится горизонтально. Вместе с ротором поворачивается и коллектор. В этом положении щетки не прикасаются к пластинам и ток перестает течь по обмотке ротора. То есть, ротор перестает быть электромагнитом.
Разумеется, движение ротора начинает замедлятся. Однако, по инерции ротор всё ещё вращается. И за это время пластины успевают повернуться и прикоснуться к противоположным контактам источника питания. Благодаря этому ток начинает течь по катушке ротора в противоположном направлении. То есть, ротор опять стал электромагнитом, но полюса у него поменялись на противоположные. Ротор опять разворачивается и цикл повторяется снова и снова. Таким образом и работает простейший двигатель постоянного тока.
Несомненно, мы рассмотрели самую простую модель электродвигателя. Однако, на этой модели очень хорошо виден сам принцип работы двигателя постоянного тока. Безусловно, обычно двигатели постоянного тока устроены сложнее. К примеру, часто их статор состоит из двух магнитов, а ротор выполнен трехполюсным. А также, постоянные магниты на статоре могут быть заменены или дополнены электромагнитами. Двигатели с таким устройством работают намного более надежно. Обычно чем мощнее двигатель, тем сложнее его устройство. Очень сильно работа двигателя постоянного тока зависит от подключения его обмоток. Причем, существует несколько способов их подключения. Стоит отметить также то, что, кроме коллекторных двигателей, существуют и бесколлекторные электродвигатели постоянного тока.
Для вашего удобства подборка публикаций
Источник
Структуры возбуждения
Любые турбо-, гидро-, дизельные генераторы, синхронные компенсаторы, моторы, производимые на данный момент, оснащаются новейшими полупроводниковыми структурами, такими как возбуждение синхронных генераторов.
В данных структурах применяется метод выпрямления трехфазных переменных токов возбудителей высокой или промышленной частоты либо напряжения возбуждаемого агрегата.
Устройство генератора таково, что структуры возбуждения могут обеспечить такие параметры работы агрегата, как:
- Первая стадия возбуждения, то есть начальная.
- Работа вхолостую.
- Подключение к сети способом точной синхронизации либо самосинхронизации.
- Работа в энергетической структуре с имеющимися нагрузками или перегрузками.
- Возбуждение синхронных приборов может быть форсировано по таким критериям, как напряжение и ток, имеющими заданную кратность.
- Электроторможение аппарата.
Конструктивные особенности явнополюсного ротора
Явнополюсной ротор В первом случае, ротор имеет два или более явно выраженных полюса. Стержни (катушки), крепятся в пазах посредством использования клиньев из немагнитного изоляционного материала.
Стержни исполняют функцию обмоток возбуждения. Сердечник изготавливается из электротехнической стали. В полюсных наконечниках располагаются стержни обмотки, предназначенной для пуска, они выполняются из латуни, для которой характерно высокое удельное сопротивление.
Аналогичная обмотка, «беличья клетка», которая имеет в своей конструкции катушки из меди, используется для устройства генераторов, она выполняет демпфирующую роль и выступает успокоителем, потому как способствует снижению неустойчивости ротора, появляющейся во время переходного режима.
Прекращение колебаний происходит после возникновения вихревых токов, появляющихся при замыканиях в роторе с полюсами значительного веса.
Неявнополюсный ротор применяется для конструкций синхронных агрегатов большой мощности. Они отличаются высокими скоростными характеристиками. Число оборотов вала может достигать предела порядка 3000 об/мин.
Этот параметр обуславливает невозможность использования явнополюсного ротора в высокоскоростных машинах в связи с трудностью крепления полюсов и обмоток возбуждения при небольшом количестве пар полюсов.
Магнитопровод ротора изготовлен, как единое целое с валом машины и выполняется из единой поковки. Набор его производится из прочной легированной стали, в пазах осуществляется формирование обмотки из медных с серебряной присадкой проводников, это делается для повышенной термической стойкости.
Определение и принцип действия
Если говорить простым языком, то синхронным называют электродвигатель, у которого скорость вращения ротора (вала) совпадает со скоростью вращения магнитного поля статора.
Кратко рассмотрим принцип действия такого электродвигателя — он основан на взаимодействии вращающегося магнитного поля статора, которое обычно создаётся трёхфазным переменным током и постоянного магнитного поля ротора.
Постоянное магнитное поле ротора создаётся за счет обмотки возбуждения или постоянных магнитов. Ток в обмотках статора создаёт вращающееся магнитное поле, тогда как ротор в рабочем режиме представляет собой постоянный магнит, его полюса устремляются к противоположным полюсам магнитного поля статора. В результате ротор вращается синхронно с полем статора, что и является его основной особенностью.
Напомним, что у асинхронного электродвигателя скорость вращения МП статора и скорость вращения ротора отличаются на величину скольжения, а его механическая характеристика «горбатая» с пиком при критическом скольжении (ниже его номинальной скорости вращения).
Скорость, с которой вращается магнитное поле статора, может быть вычислена по следующему уравнению:
N=60f/p
f – частота тока в обмотке, Гц, p – количество пар полюсов.
Соответственно по этой же формуле определяется скорость вращения вала синхронного двигателя.
Большинство электродвигателей переменного тока, используемых на производстве, выполнены без постоянных магнитов, а с обмоткой возбуждения, тогда как маломощные синхронные двигатели переменного тока выполняются с постоянными магнитами на роторе.
Ток к обмотке возбуждения подводится за счет колец и щеточного узла. В отличие от коллекторного электродвигателя, где для передачи тока вращающейся катушке используется коллектор (набор продольно расположенных пластин), на синхронном установлены кольца поперек одного из концов статора.
Источником постоянного тока возбуждения в настоящее время являются тиристорные возбудители, часто называемые «ВТЕ» (по названию одной из серий таких устройств отечественного производства). Ранее использовалась система возбуждения «генератор-двигатель», когда на одном валу с двигателем устанавливали генератор (он же возбудитель), который через резисторы подавал ток в обмотку возбуждения.
Ротор почти всех синхронных двигателей постоянного тока выполняется без обмотки возбуждения, а с постоянными магнитами, они хоть и похожи по принципу действия на СД переменного тока, но по способу подключения и управления ими очень сильно отличаются от классических трёхфазных машин.
Одной из основных характеристик электродвигателя является механическая характеристика. Она у синхронных электродвигателей приближена к прямой горизонтальной линии. Это значит, что нагрузка на валу не влияет на его обороты (пока не достигнет какой-то критической величины).
Это достигается именно благодаря возбуждению постоянным током, поэтому синхронный электродвигатель отлично поддерживает постоянные обороты при изменяющихся нагрузках, перегрузках и при просадках напряжения (до определенного предела).
Ниже вы видите условное обозначение на схеме синхронной машины.
Торможение противовключением асинхронных двигателей.
Торможение противовключением может быть сделано двумя путями: путем чередования двух фаз питающего напряжения (рисунок 1 кривая А) или при активном моменте нагрузки на валу двигателя, например, грузоподъемный механизм (рисунок 1 кривая Б).
Данное торможение применяют как один из способов остановки двигателя.
Рассмотрим первый путь. На рисунке 1 мы видим механическую характеристику асинхронного двигателя при торможении противовключением.
Допустим, двигатель сейчас работает в точке 1 – номинальная работа асинхронного двигателя, осуществив переключение двух фаз, изменит текущее направление вращения магнитное поле статора, и двигатель перейдет в точку 2, стоит заметить, что с точки 1 в точку 2, он перейдет при тех же оборотах вращения вала. Далее обороты начнут спадать, и в момент времени, когда двигатель дойдет до точки 3 (нуля), его необходимо отключить от сети, иначе он начнет разгонятся и перейдет опять в двигательный режим – точку 4, однако направление будет обратно предыдущему.
Скольжение в данном случае будет изменяться от S=2 до S=1
Хочу обратить ваше внимание, что при торможении противовключением, токи в обмотке двигателя будут в 6-8 раз превышать номинальный ток двигателя. В данном режиме очень сильно нагревается двигатель, что влияет на его износ
В этот момент у короткозамкнутых асинхронных двигателей происходит перегрузка по току, вследствие эффекта вытеснения тока активное сопротивление ротора возрастает.
Для того что бы увеличить эффективность торможения асинхронных двигателей с фазным ротором, в цепь ротора необходимо добавить сопротивление, что дает нам ограничение по току и увеличение момента.
Рассмотрим второй путь. Как было сказано ранее, этот способ используется при активном моменте нагрузки на валу.
К примеру, необходимо опустить груз, обеспечивая торможение с постоянной скоростью при помощи асинхронного двигателя, и поэтому, для этого вводится добавочное (дополнительное) сопротивление в цепь ротора, в следствии чего двигатель переходит на искусственную механическую характеристику (рисунок 1 кривая Б), груз будет опускаться с постоянной скоростью –n(cопр). Скольжение может изменяться о S=1 до S =2.
Принцип действия и пуск однофазного асинхронного двигателя.
Работа трехфазного асинхронного двигателя от однофазной сети.
Синхронные генераторы. Назначение, устройство, принцип действия, виды и применение синхронных генераторов.
Синхронные компенсаторы.
Система генератор — двигатель или система Леонардо
Ранее наиболее доступным источником электрической энергии были сети постоянного тока неизменного напряжения. Такие системы обычно ограничивались крупными промышленными городами. Соответственно промышленность в качестве приводных электродвигателей использовала только машины постоянного тока.
Регулирование скорости вращения таких машин осуществлялось по потоку возбуждения. Это вызывало большое количество проблем, связанных с коммутацией и соответственно скорым выходом из строя коллекторного узла. Это обуславливалось тем, что ток якоря существенно больше тока возбуждения и его регулирование (тогда в качестве регулирующего устройства применялись резисторы) вызывало большие потери мощности, а также тем, что процессы коммутации в коллекторном узле на то время были очень плохо изучены. Поэтому большинство таких электродвигателей работало без регулирования параметров. Схема установки:
Но с развитием промышленных технологий автоматически росли и требования к электроприводам, все больше исследований проводилось в этой области. Значительных успехов при решении проблем процессов коммутации достигли благодаря новым конструкциям обмоток дополнительных и главных полюсов. Но это не решало проблему управления двигателем постоянного тока.
Довольно большим прорывом в области данного рода электропривода стало появление на свет в 1890-е годы системы генератор – двигатель или системы Леонардо. Схема показана ниже:
В данной системе питание якоря электродвигателя производится напрямую от генератора без каких либо преобразовательных устройств. Приводной двигатель генератора вращается с постоянной скорость ω = const. Регулирование выходного напряжения генератора производится изменением потока возбуждения генератора, при этом не возникает проблем в коммутирующем узле (коллекторе). Это связано с тем, что коэффициент пульсаций генератор и двигателя как правило не отличаются или отличаются не существенно. Данная система позволяет регулировать напряжения якоря двигателя от 0 до Umax.
Также прогресс не обходил и машины переменного тока и системы производства, распределения и преобразования электрической энергии переменного напряжения. Усовершенствованные двигатели переменного напряжения стали активно применяться на производстве в качестве нерегулируемых электроприводов. Они привлекали проектировщиков все больше и больше своей простотой, относительно невысокой стоимость и меньшими (в сравнении с машинами постоянного напряжения) массогабаритными показателями. На строящихся заводах активно внедрялись системы электроснабжения переменного тока. Предприятия работающие на постоянном токе впоследствии были переведены на переменный. Впоследствии в качестве приводных двигателей для систем генератор – двигатель стали использовать машины переменного напряжения. Схема показана ниже:
В начале своего развития система генератор – двигатель не имела какого-то особенного конструктивного облика. Установка, сборка и монтаж производились в соответствии с предоставляемыми производственными площадями. В начале 1940 – х начали появляться модульные конструкции системы генератор – двигатель. Регулирующую аппаратуру, приводной двигатель и генератор стали объединять в общие блоки управления электроприводом.
Установка генератор – двигатель обладает следующими достоинствами:
- Отсутствие пульсаций якорного тока;
- Большие кратковременные перегрузки;
- Регулирование скорости в обеих направления в любом допустимом диапазоне;
- Рекуперация энергии в сеть при генераторном режиме работы электродвигателя;
Также есть и недостатки:
- Очень высокие капитальные затраты;
- Большие массогабаритные показатели;
- Необходимость смазки вращающихся частей и их проверка;
- При выходе из строя длительное время ремонта;
- Очень низкий КПД, не выше 80%;
Похожие материалы:
- «Умный» робот или радиолокационное измерение с…
- Промышленные цифровые (дискретные) входы — это не…
- Big Data или просто большая куча данных?
- 5G — в четыре раза больше мощности или больше?
- Как пользовательский интерфейс на оборудовании IoT…
- Прогностическое или профилактическое обслуживание:…