Устройство и схема подключения коллекторного двигателя переменного тока

Рабочий цикл и его характеристики

Полный рабочий цикл любого электропривода можно разделить на четыре технологических этапа:

  • пуск, в течение которого скорость вращения вала/якоря увеличивается от нуля до требуемого показателя;
  • рабочий, во время которого мотор работает при неизменном напряжении на зажимах роторной цепи и электроцепи возбуждения;
  • регулирования, когда осуществляется воздействие на внутренние цепи (якорного блока или возбуждения) с целью изменения оборотов вала;
  • остановки, характеризуемой снижением скорости до нуля.

Согласно приведенной структуре цикла выделяют пусковые, рабочие, регулировочные и тормозные характеристики. Стартовый этап рассматривают относительно параметров пускового момента, тока, продолжительности процесса, стоимости дополнительных устройств и затрат электроэнергии. При этом обеспечивают максимально плавный пуск коллекторного мотора. Основными характеристиками механической энергии эл/двигателя являются вращающий момент и скорость вращения.

Рабочий период оценивается совокупностью зависимостей, включая частоту оборотов вала, токовых параметров привода в роторной электроцепи, полезного вращающего момента, КПД от полезной мощности КД при неизменном напряжении питания и токе в обмотке возбуждения. Регулировочные характеристики определяются пределами, ступенями и способом изменения скоростных параметров. Возможность плавного регулирования оборотов электрической машины в широком диапазоне является одним из самых ценных качеств этой категории электрооборудования. Тормозной режим роторного механизма при отключении питания происходит за счет сил трения. Для ускорения остановки мощных эл/машин реализуют один из способов торможения посредством создания тормозного момента, направленного против вращения якоря.

Управление работой двигателя

На практике используются двигатели с различными способами регулирования работы. Управление коллекторным мотором может осуществляться с помощью электронной схемы, в которой роль регулирующего элемента выполняет симистор, «пропускающий» заданное напряжение на мотор. Симистор работает, как быстросрабатывающий ключ, на затвор которого приходят управляющие импульсы и открывают его в заданный момент.

В схемах с использованием симистора реализован принцип действия, основанный на двухполупериодном фазовом регулировании, при котором величина подаваемого на мотор напряжения привязана к импульсам, поступающим на управляющий электрод. Частота вращения якоря при этом прямо пропорциональна приложенному к обмоткам напряжению. Принцип работы схемы управления коллекторным двигателем упрощенно описывается следующими пунктами:

  • электронная схема подает сигнал на затвор симистора,
  • затвор открывается, по обмоткам статора течет ток, придавая вращение якорю М двигателя,
  • тахогенератор преобразует в электрические сигналы мгновенные величины частоты вращения, в результате формируется обратная связь с импульсами управления,
  • в результате ротор вращается равномерно при любых нагрузках,
  • реверс электродвигателя осуществляется с помощью реле R1 и R

Помимо симисторной существует фазоимпульсная тиристорная схема управления.

Универсальный коллекторный двигатель

В общем, понятие коллекторного двигателя подразумевает под собой электродвигатель, способный не только преобразовать электрическую энергию в механическую, но и наоборот. В таком типе двигателя переменного тока хотя бы одна обмотка должна быть соединена с коллектором.

Ротор коллекторного двигателя

В коллекторных двигателях коллекторы выполняют сразу две функции:

  • переключатель обмоток;
  • датчик, с помощью которого определяют положение ротора.

Различают два вида коллекторных двигателей. Их классификация происходит в зависимости от типа питания:

  1. Питание от постоянного тока. У таких двигателей высокий пусковой момент, частота вращения имеет плавное управление, а конструкция самого привода достаточно простая.
  2. Универсальные же двигатели могут работать при питании переменной и постоянной электроэнергией. Размеры машины относительно компактные, управлять ей просто.

В рамках темы нас интересует коллекторный двигатель универсального типа.

Рисунок ниже изображает машину такого вида и ее основные детали. Схожим образом выглядят и все остальные КД. 

Возбуждение у таких двигателей может быть последовательное и параллельное. Машины второго типа уже устарели и сняты с производства, поэтому на нем мы останавливаться не будет. А схема подключения двигателя с коллектором представлена на рисунке ниже.

Принцип работы коллекторного двигателя от переменного тока заключается в следующем: во время смены полярности ток в обмотках статора и ротора изменяется и направление. Это не дает изменить свое направление вращательному моменту.

Применение УКД

В прошлом веке универсальные КД использовали при конструировании бытовой техники, однако сегодня все современные производители предпочитают использовать бесколлекторные двигатели.

Вот главные недостатки таких приводов:

  • коэффициент полезного действия снижен;
  • щеточно-коллекторный узлы характеризуются повышенным образованием искр, это влияет на быструю скорость износа прибора, он также может быть опасен.

Чем отличаются приводы постоянного и переменного тока?

Оба типа двигателей, постоянного и переменного тока, предназначены для выполнения одинаковой функции – превращения электроэнергии в механическую. Тем не менее их сравнение имеет смысл, они в корне отличаются друг от друга по нескольким пунктам: 

  • тип питания;
  • процесс создания;
  • система управления.

Первый пункт, питание, является самым главным отличием, что ясно даже из названия машин. Понятно, что электроприводы переменного тока питают источники переменного тока, а двигатели постоянного тока – источники постоянного тока (например, это могут батареи или преобразователи питания). 

Электроприводы с полем постоянного тока содержат в своей конструкции щетки и коммутаторы, что усложняет их обслуживание и сокращает сроки эксплуатации относительно, скажем, асинхронных агрегатов, чего не скажешь о последних. Они, наоборот, отличаются своей прочностью и долговечностью.

Еще одно коренное отличие двигателей заключается в контроле скорости.

В машинах постоянного тока скорость работы можно регулировать с помощью изменения тока в обмотках ротора. В электромоторах переменного – с помощью регулировки частоты вращения. 

Реверс машины переменного тока

Реверс в работе с двигателем – процесс изменения вращения якоря на супротивный в машинах постоянного тока, асинхронных и универсальных коллекторных двигателях. Работу двигателя практически невозможно представить без такой функции. Без изменения направления вращения ротора не будет работать тельфер, кран-балка, лебедка, лифты и все остальные механизмы для подъема грузов. 

Как осуществить реверс в двигателе переменного тока рассмотрим ниже.

Типичные неисправности

Наибольшего внимания к себе требует щеточно-коллекторный механизм, в котором наблюдается искрение даже при работе нового двигателя. Сработанные щетки следует заменить для предотвращения более серьезных неисправностей: перегрева ламелей коллектора, их деформации и отслаивания. Кроме того, может произойти межвитковое замыкание обмоток якоря или статора, в результате которого происходит значительное падение магнитного поля или сильное искрение коллекторно-щеточного перехода.

Избежать преждевременного выхода из строя универсального коллекторного двигателя может грамотная эксплуатация устройства и профессионализм изготовителя в процессе сборки изделия.

Источник

Устройство и принцип работы

ДПТ по своему строению напоминает синхронный электродвигатель переменного тока, разница между ними только в типе потребляемого тока. Двигатель состоит из неподвижной части – статора или индуктора, подвижной части – якоря и щеточноколлекторного узла. Индуктор может быть выполненным в виде постоянного магнита, если двигатель маломощный, но чаще он снабжается обмоткой возбуждения, имеющей два или больше полюса. Якорь состоит из набора проводников (обмоток), закрепленных в пазах. В простейшей модели ДПТ использовались только один магнит и рамка, по которой проходил ток. Такую конструкцию можно рассматривать только в качестве упрощенного примера, тогда как современная конструкция – это усовершенствованный вариант, имеющий более сложное устройство и развивающий необходимую мощность.Принцип работы ДПТ основан на законе Ампера: если в магнитное поле поместить заряженную проволочную рамку, она начнет вращаться. Ток, проходя по ней, образует вокруг себя собственное магнитное поле, которое при контакте с внешним магнитным полем начнет вращать рамку. В случае с одной рамкой вращение будет продолжаться, пока она не займет нейтральное положение параллельно внешнему магнитному полю. Чтобы привести систему в движение, нужно добавить еще одну рамку. В современных ДПТ рамки заменены якорем с набором проводников. На проводники подается ток, заряжая их, в результате чего вокруг якоря возникает магнитное поле, которое начинает взаимодействовать с магнитным полем обмотки возбуждения. В результате этого взаимодействия якорь поворачивается на определенный угол. Далее ток поступает на следующие проводники и т.д.
Для попеременной зарядки проводников якоря используются специальные щетки, выполненные из графита или сплава меди с графитом. Они играют роль контактов, которые замыкают электрическую цепь на выводы пары проводников. Все выводы изолированы между собой и объединены в коллекторный узел – кольцо из нескольких ламелей, находящееся на оси вала якоря. Во время работы двигателя щетки-контакты поочередно замыкают ламели, что дает возможность двигателю вращаться равномерно. Чем больше проводников имеет якорь, тем более равномерно будет работать ДПТ.Двигатели постоянного тока делятся на:
— электродвигатели с независимым возбуждением;
— электродвигатели с самовозбуждением (параллельные, последовательные или смешанные).
Схема ДПТ с независимым возбуждением предусматривает подключение обмотки возбуждения и якоря к разным источникам питания, так что между собой они не связаны электрически.
Параллельное возбуждение реализовывается путем параллельного подключения обмоток индуктора и якоря к одному источнику питания. Двигатели этих двух типов обладают жесткими рабочими характеристиками. У них частота вращения рабочего вала не зависит от нагрузки, и ее можно регулировать

Такие двигатели нашли применение в станках с переменной нагрузкой, где важно регулировать скорость вращения вала
При последовательном возбуждении якорь и обмотка возбуждения подключены последовательно, поэтому значение электрического тока у них одинаковое. Такие двигатели более «мягкие» в работе, имеют больший диапазон регулирования скоростей, но требуют постоянной нагрузки на вал, иначе скорость вращения может достичь критической отметки

У них высокое значение пускового моменты, что облегчает запуск, но при этом скорость вращения вала зависит от нагрузки. Применяются они на электротранспорте: в кранах, электропоездах и городских трамваях.
Смешанный тип, при котором одна обмотка возбуждения подключается к якорю параллельно, а вторая – последовательно, встречается редко.

Вступление

Наверняка у каждого новичка, который впервые связал свою жизнь с электромоделями на радиоуправлении, после тщательного изучения начинки, появляется вопрос. Что такое коллекторный (Brushed) и бесколлекторный (Brushless) двигатель? Какой из них лучше поставить на свою радиоуправляемую электромодель?

Коллекторные моторы, которые так часто используются для приведения в движение электромоделей на радиоуправлении, имеют всего два исходящих питающих провода. Один из них «+» другой « — ». В свою очередь они подключаются к регулятору скорости вращения. Разобрав коллекторный мотор, вы всегда там найдете 2 магнита изогнутой формы, вал совместно с якорем, на который намотана медная нить (проволока), где по одну сторону вала стоит шестерня, а по другую сторону располагается коллектор, собранный из пластин, в составе которых чистая медь.

Как работает бесщеточный двигатель

В 1970-х годах произошел скачок в сфере полупроводниковой электроники, благодаря которому было решено устранить коллектор и щетки в двигателях постоянного тока. В бесщеточном двигателе усилитель заменил собой механические соединения контактов. Электронный датчик понимает угол поворота ротора и способен контролировать полупроводниковые переключатели. Отказ от скользящих контактов привел к снижению трения в механизме, а значит, и увеличению срока службы.

Бесщеточный двигатель в шуруповерте гораздо эффективнее и меньше страдает от износа. Также он гораздо тише и обеспечивает высокий крутящий момент. Внутренние элементы полностью закрываются, благодаря чему грязь и вода не попадают внутрь. Эффективность преобразования энергии в силу позволяет получить высокий КПД.

На скорость вращение влияет не центробежная сила, а напряжение, потому двигатель может работать в заданном режиме без перебоев. Если ток начнет просачиваться или мотор намагнитится – производительность не пострадает, а скорость не отстанет от момента вращения.

При эксплуатации механизма нет нужны в использовании коммутатора и обмотки, а магнит гораздо меньше, как по массе, так и по габаритам, если сравнивать с щеточным конкурентом.

Такое решение применяется в шуруповертах, мощность которых не переходит за 5 кВт. Их неразумно устанавливать в моделях с большими параметрами. Магниты внутри корпуса чувствительны к магнитному полю и сильному нагреву.

Разница щеточного и бесщеточного шуруповерта в принципе работы двигателя:

  1. Ток переключается не в роторе, а в обмотках статора. На якоре не достает катушки, магнитное поле образуется благодаря специальным магнитам внутри корпуса.
  2. Миг, когда требуется подача электричества, определяется встроенными датчиками. Они работают по принципу эффекта Холла. ДПР импульсы и регуляторные сигналы скорости проходят через встроенный процессор, где и формируются. Это называется ШИМ сигналом.
  3. Образованные импульсы в порядке друг за другом направляются на инверторы или, если проще, усилители – они увеличивают полученный ток. Их выходы связаны с обмоткой на статоре. Инверторы необходимы для коммутирования тока, возникающего в катушках, следуя импульсам, которые подаются из узла внутреннего процессора.

В результате описанного процесса формируется магнитное поле, которое связывается с тем, что вокруг ротора. Якорь начинает вращение – инструмент работает.

Компоновка и принцип работы

Подвижная часть коллекторного двигателя, как и любого другого, механически сбалансирована и закреплена в подшипниках вращения, вмонтированных в неподвижную станину.


Стационарный статор и вращающийся ротор имеют собственные обмотки из изолированного провода. По ним протекает электрический ток, создающий магнитные поля со своими полюсами: северным N и южным S.

При взаимодействии этих двух электромагнитных полей создается вращение ротора.

Поскольку к обеим обмоткам необходимо постоянно подводить напряжение, а ротор вращается, то для него смонтировано специальное устройство: коллектор с щеточным механизмом.

Виды двигателей постоянного тока

К концу 19 века уже началась эксплуатация электрических машин постоянного тока: генераторов и моторов. Причем оба вида не отличаются конструктивно и могли применяться как для выработки электроэнергии, так и для производства работ.

Коллекторный мотор

Принцип вращения рамки с током в поле постоянного магнита наиболее ярко реализован в коллекторных электродвигателях. Такие электродвигатели работают как от постоянного, так и от переменного тока. Впервые судно с двигателем постоянного тока запустил Б.С. Якоби по реке Неве в 1838г.

Такой двигатель состоит из неподвижной части (статор), на которой устанавливаются магниты для маломощных двигателей или катушки из ферримагнитных сталей, и обмотки с медным проводом для мощных электрических машин.

Якорь МПТ собран из пластин электротехнической стали, изолированных от вала и друг от друга для уменьшения вихревых токов. В пазы цилиндра укладывается витки провода из меди разного сечения в зависимости от токов и выбранной схемы (петлевая, волновая). Концы проводов выводятся и ввариваются (впаиваются) в ламели коллектора.

Коллектор состоит из медных изолированных пластин (ламелей) закрепленных по окружности, изолированных друг от друга и корпуса якоря. По ним перемещаются притертые подпружиненные щетки, закрепленные в щеткодержателе, для последовательной подачи тока в обмотки якоря. При подаче напряжения на щетки, якорь начинает вращаться и двигатель постоянного тока выходит в заданный режим.

Универсальный коллекторный мотор

Дальнейшее развитие коллекторных ДПТ позволило использовать их при работе от источников переменного тока. Для этого шихтуется не только якорь, но и цилиндр статора набирается из пластин электротехнической стали, а обмотки возбуждения соединяются последовательно с якорными. Одновременная смена полярности на них при прохождении переменного тока не меняет направление вращения вала двигателей.

Основное отличие — шихтованные статор и якорь делают магнитный поток стабильным и не создают вихревых токов (меньше греются). В остальном универсальный двигатель мало чем отличается от обычного коллекторного.

Вентильно-индукторные двигатели

Такие электромоторы иногда называются бесщёточными или безколлекторными. Суть такой конструкции в том, что ротор имеет зубчатое строение, собранное из постоянных магнитов, а обмотки возбуждения размещаются на зубчатых полюсах статора.

Переключением полюсов (катушек) занимается встроенный контроллер, за обратную связь, контролирующую положение якоря (ротора), отвечает датчик Холла. При включении пары катушек магнит на роторе движется к ней, затем следующая пара получает питание. Скорость вращения определяется частотой переключения катушек — чем выше частота, тем выше скорость.

Недостатком такой конструкции является пульсирующий крутящий момент. Плюсы: нет коллектора и щеток, простая конструкция, хорошее управление скоростью и малые габариты.

Безколлекторный с независимым возбуждением

Конструкция ротора этого двигателя собрана из двух зубчатых пакетов из магнитной стали на общей оси. Вершины зубцов пакета смещены друг относительно друга на 120°. Пакеты отстоят друг от друга на расстоянии, а зубцы одного совпадают с впадинами другого, таким образом, что суммарный магнитный поток ротора равен нулю.

Размещенная на статоре обмотка возбуждения тоже распределена со смещением в 120°.  Собранный из электротехнической стали статор имеет размер такой, чтобы его магнитное поле перекрывало оба пакета магнитов ротора.

Поочередное включение катушек ротора создает магнитное поле в обоих магнитных блоках и ротор начинает плавно вращаться. Изменяя частоту и направление переключения секций обмотки возбуждения, а также силу тока в них, можно получить бесконтактный реверс, линейный крутящий момент и плавное изменение скорости.

Кроме этих достоинств есть еще отсутствие магнитов и графитовых щеток с коллектором. К недостаткам можно отнести сложность конструкции двигателей и питание обмоток от электронного преобразователя.

Несомненными достоинствами двигателей постоянного тока можно отнести:

  • уровень плавного регулирования скорости достигает 10000 об/мин;
  • легкость управления скоростью за счет напряжения, а крутящего момента — током якоря;
  • за счет обратной связи можно поддерживать хороший момент на малых оборотах.

Их недостатков можно отметить обязательное наличие преобразователя переменного тока в постоянный и сложность конструкции некоторых видов двигателей (коллектор со щетками, сложный якорь).

Критерии выбора и соимость

Для того, чтобы правильно выбрать наиболее подходящий тип регулятора, нужно хорошо представлять себе, какие есть разновидности таких устройств:

  1. Различные типы управления. Может быть векторная или скалярная система управления. Первые применяются чаще, а вторые считаются более надёжными.
  2. Мощность регулятора должна соответствовать максимально возможной мощности мотора.
  3. По напряжению удобно выбирать устройство, имеющее наиболее универсальные свойства.
  4. Характеристики по частоте. Регулятор, который вам подходит, должен соответствовать наиболее высокой частоте, которую использует мотор.
  5. Другие характеристики. Здесь речь идёт о величине гарантийного срока, размерах и других характеристиках.

В зависимости от назначения и потребительских свойств, цены на регуляторы могут существенно различаться.

Большей частью они находятся в диапазоне примерно от 3,5 тысяч рублей до 9 тысяч:

  1. Регулятор оборотов KA-18 ESC, предназначенный для моделей масштаба 1:10. Стоит 6890 рублей.
  2. Регулятор оборотов MEGA коллекторный (влагозащищенный). Стоит 3605 рублей.
  3. Регулятор оборотов для моделей LaTrax 1:18. Его цена 5690 рублей.

Подключение однофазного коллекторного двигателя — переменного тока

В этой теме необходимо понять, — как именно подключается однофазный коллекторный двигатель переменного тока, допустим, после его ремонта. Электрическая схема рис.1 дает нам представление о характере электрических соединений, то-есть, здесь мы можем заметить, что две обмотки статора электродвигателя в электрической цепи состоят в последовательном соединении, а две обмотки ротора электродвигателя относительно внешнего источника напряжения — соединены параллельно и электрическая цепь для данного примера замыкается на обмотках ротора электродвигателя.

Кто разбирал из нас бытовые потребители электроэнергии как:

и далее, со мной согласятся, что для электрической схемы рис.1 недостает еще одного элемента — конденсатора. Следовательно, к данному названию типа двигателя можно еще добавить такое название как конденсаторный электродвигатель . Если следовать логическому мышлению, то конденсатор в схеме электродвигателя в обязательном порядке соединяется с пусковой обмоткой статора, который служит для первоначального сдвига ротора. Соответственно мы пришли к выводу, что конденсатор непосредственно должен состоять в последовательном соединении с пусковой обмоткой. Для примера, приведена схема однофазного двигателя с рабочей и пусковой обмотками статора, где сопротивление на каждой обмотке будет принимать свое значение рис.2.

В зависимости от типов асинхронных двигателей и их применения рис.3, существуют следующие схемы подключения к однофазной сети:

а) омический сдвиг фаз, биффилярный способ намотки пусковой обмотки;

б) емкостной сдвиг фаз с пусковым конденсатором;

в) емкостной сдвиг фаз с пусковым и рабочим конденсатором;

г) емкостной сдвиг фаз с рабочим конденсатором.

В схемах указаны следующие обозначения:

Перед подключением коллекторного однофазного двигателя, необходимо определить:

обмотки статора. Конденсатор, с его номинальными значениями по емкости и напряжению, и соответствующими данными для определенного типа двигателя, следует подключать к пусковой обмотке статора — последовательно. Сопротивление обмоток статора принимает следующие средние значения:

  • рабочая обмотка 10-13 Ом;
  • пусковая обмотка 30-35 Ом;
  • общее сопротивление обмоток 40-45 Ом,

— для некоторых видов бытовой техники. Выполняя замеры сопротивлений на выводах проводов обмоток статора можно определить пусковую обмотку с ее средним значением. То-есть, сопротивление пусковой обмотки принимает среднее значение между рабочей обмоткой и общим сопротивлением двух обмоток — рабочей и пусковой.

Как работает бесколлекторный мотор

Подается переменное трехфазное напряжение, способствующее протеканию 3-хфазной системы токов. Сдвиг обмоток создает МП. Оно индуцирует ЭДС, которая воздействует на обмотку. Протекающий ток искажает статорное МП, что увеличивает энергию. Это приводит к формированию электромагнитной силы (ЭМС), приводящая в движение ротор.

Формирование движущиеся силы происходит при различии скорости вращения ротора и статора. В связи с этим, ВЭ работает асинхронно статору, от чего установка получила название АД.

Режимы

Применение дополнительного двигателя переключает мотор. Увеличение разности частот машины и магнитного поля меняет действующее направление ЭДС. Это же касается электромагнитного момента, ставшего тормозным. Запуск генераторного режима предусматривает эксплуатацию источника реактивной мощности – формируется магнитное поле. Если МП отсутствует, тогда его создают постоянными магнитами, активной нагрузкой конденсаторами, индукцией.

Генератор асинхронного типа (ГАТ) предполагает использования в сети синхронных двигателей – компенсаторов, статических конденсаторов. Несмотря на простоту обслуживания, ГАТ нашел распространение в редких случаях. Оснащение ставят в ветрогенераторах малой мощности, эскалаторах, подъемных кранах, лифтах.

Холостой ход возникает, когда на валу нет нагрузки, например, отсутствует редуктор, рабочий манипулятор. Исходя из режима, определяются параметры свойства намагничивания тока, параметры потери мощности в магнитопроводе.

Электромагнитный тормоз

Варьирование направления ВЭ и МП изменяет метод функционирования электромагнитного момента. Изменение пути вращения ротора и поля в противоположную сторону располагает ЭДС в стандартном режиме с потреблением реактивной мощности. Но ЭМ направляется во встречную сторону нагрузки, что вызывает торможение.

Режим эксплуатации задействуют редко. Его отрицательной стороной является выделение тепла, объем которого мотор не может рассеять. Длительное и частое применение приводит к поломке силового механизма.

Методы управления

Реостатный – контроль частоты ВЭ за счет регулирования объема сопротивления в цепи ротора. Увеличивает пусковой момент, повышает параметр критического скольжения. Какие еще:

  • частотный – устанавливается специальный преобразовательный элемент, изменяющий частоту вращения ротора. Через него включается мотор;
  • переключатель – изменение схемы обмотки при запуске электрического двигателя, оказывающее понижающий эффект на пусковой ток и момент;
  • воздействие импульсом – подача другого вида напряжения;
  • варьирование количества полюсов – актуально исключительно для механизмов, оснащенных короткозамкнутым ротором;
  • регулирование амплитуды напряжения питания – примечателен регулированием действующего значения, а векторы управления (ВУ) и возбуждения перпендикулярные (ВП);
  • фазная технология – характерна сдвигом фаз между ВУ и ВП.

Способ изменения частоты и момент подбирается с учетом технической возможности и целесообразности определенного метода в конкретной ситуации. Выбор методов увеличивает эффективность эксплуатации машин вышеупомянутых классов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: