Турбовинтовой двигатель

Двухпоршневой и малоразмерный двигатель

Наиболее распространен двигатель с двумя валами, оборудованный теплообменником. В сравнении с агрегатами, у которых всего 1 вал, такие аппараты более эффективные и мощные. 2-х вальный двигатель оснащен турбинами, одна из которых предназначена для привода компрессора, а другая для привода осей.

Подобный агрегат обеспечивает машине хорошие динамические характеристики и сокращает кол-во скоростей в трансмиссии.

Также существуют малоразмерные газотурбинные двигатели. Они состоят из компрессора, газо-воздушного теплообменника, камеры сгорания и двух турбин, одна из которых находятся в одном корпусе со сборником газа.

Малоразмерные газотурбинные двигатели применяются в основном на самолетах и вертолетах, которые преодолевают большие расстояние, а также на беспилотных летательных устройств и ВСУ.

Проблемы разработки малых ТГД

При уменьшении размера ГТД происходит уменьшение КПД и удельной мощности по сравнению с обычными турбореактивными двигателями. При этом удельная величина расхода топлива так же возрастает; ухудшаются аэродинамические характеристики проточных участков турбины и компрессора, снижается КПД этих элементов. В камере сгорания, в результате уменьшения расхода воздуха, снижается коэффициент полноты сгорания ТВС.

Снижение КПД узлов ГТД при уменьшении его габаритов приводит к уменьшению КПД всего агрегата

Поэтому, при модернизации модели, конструкторы уделяют особое внимание увеличению КПД отдельно взятых элементов, вплоть до 1%. Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%

Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину

Для сравнения: при увеличении КПД компрессора с 85% до 86%, КПД турбины возрастает с 80% до 81%, а общий КПД двигателя увеличивается сразу на 1,7%. Это говорит о том, что при фиксированном расходе топлива, удельная мощность увеличится на ту же величину.

Чем вредна высокая частота вращения коленвала?

Манера езды «тапку в пол» подразумевает постоянное раскручивание коленчатого вала до 5–8 тыс. оборотов за минуту и позднее переключение скоростей, когда от шума двигателя буквально звенит в ушах. Чем чреват данный стиль вождения, кроме создания аварийных ситуаций на дороге:

  • все узлы и агрегаты автомобиля, а не только мотор, испытывают максимальные нагрузки в течение срока эксплуатации, что снижает общий ресурс на 15–20%;
  • из-за интенсивного нагрева двигателя малейший сбой охлаждающей системы ведет к капитальному ремонту вследствие перегрева;
  • трубы выхлопного тракта прогорают значительно быстрее, а вместе с ними – дорогостоящий катализатор;
  • ускоренно изнашиваются элементы трансмиссии;
  • поскольку частота вращения коленвала превышает нормальные оборотычуть ли не вдвое, расход горючего тоже увеличивается в 2 раза.

Эксплуатация автомобиля «на разрыв» имеет дополнительный негативный эффект, связанный с качеством дорожного покрытия. Движение на большой скорости по неровным дорогам буквально убивает элементы подвески, причем в кратчайшие сроки. Достаточно влететь колесом в глубокую выбоину – и передняя стойка согнется либо треснет.

Принцип работы

Принцип работы ТВРД заключается в следующем. Поток воздуха захватывается вентилятором и, частично сжимаясь, направляется по двум направлениям: в первый контур к компрессору и во второй  на неподвижные лопатки. Вентилятор при этом играет роль не винта, создающего тягу, а компрессора низкого давления, увеличивающего количество воздуха, проходящего через двигатель. В первом контуре поток сжимается и нагревается при проходе через компрессор высокого давления и попадает в камеру сгорания. Здесь он смешивается с впрыснутым топливом и воспламеняется, в результате чего образуются газы с большим запасом энергии. Поток расширяющихся горячих газов направляется на турбину высокого давления и вращает ее лопатки. Эта турбина вращает компрессор высокого давления, который закреплен с ней на одном валу. Далее газы вращают турбину низкого давления, приводящую в движение вентилятор, после чего попадают в сопло и вырываются наружу, создавая реактивную тягу.

В это же время во втором контуре поток воздуха, захваченный и сжатый вентилятором, попадает на неподвижные лопатки, выпрямляющие направление его движения так, чтобы он перемещался в осевом направлении. При этом воздух дополнительно сжимается, после чего попадает в сопло второго контура и выходит наружу, создавая дополнительную тягу. Два контура обычно не смешиваются между собой, но есть и исключения.

Отличительные черты газотурбинных двигателей

Сегодня наиболее широко подобный тип моторов используется в авиации. Увы, но из-за особенностей устройства они не могут применяться для обычных легковых автомобилей.

По сравнению с другими агрегатами внутреннего сгорания газотурбинный движок обладает наибольшей удельной мощностью, что является его основным плюсом. Помимо этого такой двигатель способен функционировать не только на бензине, но и на множества других видах жидкого горючего. Как правило, он работает на керосине либо на дизельном горючем.

Газотурбинный и поршневой двигатель, которые устанавливаются на «легковушках» за счет сжигания топлива изменяют химическую энергию горючего в тепловую, а затем и в механическую.

Но сам процесс у данных агрегатов немного различается. И в том и в другом движке сначала осуществляется забор (то есть воздушный поток поступает в мотор), затем происходит сжатие и впрыск горючего, после этого ТВС загорается, вследствие чего сильно расширяется и в результате выбрасывается в атмосферу.

Различие состоит в том, что в газотурбинных аппаратах все это проходит в одно время, но в различных частях агрегата. В поршневом же все осуществляется в одной точке, но по очередности.

Проходя через турбинный мотор, воздух сильно сжимается в объеме и благодаря этому увеличивает давление почти в сорок раз.

Единственное движение в турбине это вращательное, когда как в иных агрегатах внутреннего сгорания, помимо вращения коленвала также происходит движение поршня.

КПД и мощность газотурбинного двигателя выше чем у поршневого, несмотря на то, что вес и размеры меньше.

Для экономного потребления топлива газовая турбина оснащена теплообменником — диском из керамики, который функционирует от двигателя с небольшой частотой вращения.

Почему турбина может не включиться – неисправности

При управлении машиной с системой турбонаддува водитель может столкнуться с множеством проблем и неисправностей. Рассмотрим основные проблемы и методы их решения:

  • Неисправность предохраняющего клапана. Бывает, что клапан забивается мусором или растрескивается, что приводит к блокировке работы турбины. Установить поломку достаточно просто – примерно до 3-4 тысяч оборотов клапан все еще может работать, поэтому он будет нагнетать воздух. Однако при превышении этого показателя он резко закрывает турбину, что приводит к падению мощности. Чтобы решить проблему, выключите электронные системы авто, откройте капот, отсоедините отрицательную клемму от аккумулятора, найдите турбину, отключите систему смазки и демонтируйте устройство (обычно оно располагается рядом с движком). Потом снимите клапан и осмотрите его, при необходимости – выполните очистку устройства или его замену.
  • Негерметичное крепление компонентов турбонаддува. Чтобы обеспечить максимальную мощность нагнетания воздуха в ДВС, необходимо, чтобы детали турбины герметично крепились к автомобилю. В случае негерметичного крепления мощность нагнетания резко падает. Установить наличие проблемы можно по двум признакам – резкое снижение мощности и появление характерного свиста во время работы авто. Чтобы разобраться с проблемой, нужно обесточить машину, открыть капот и проверить герметичность крепления прибора. Проблемы могут возникнуть с штуцером, трубкой подачи масла, клапаном и так далее. Для устранения проблемы нужно восстановить герметичность (например, если проблема в штуцере, нужно купить новый).
  • Использование плохого масла. Для эффективной работы системы турбонаддува устройство необходимо смазывать маслом. Однако бывает так, что водитель для смазки использует дешевое некачественное масло с обилием примесей – в таком случае эффективность турбонаддува значительно снизится. Установить проблему очень просто – во время движения авто в машине появляется резкий громкий скрежет, а мощность двигателя не увеличивается при разгоне до высоких скоростей. Решение проблемы – нужно купить новое качественное масло и залить его вместо старого в автомобиль.

Сфера использования

Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики. На большом количестве современных транспортных самолетов применяются именно ТВД. Их преимущество прежде всего в экономичности. 

Для турбовинтовых двигателей сила тяги состоит из тяги воздушного винта и силы тяги, возникающей при истечении газа из сопла. В зависимости от скорости полета самолета изменяются доли двух составляющих тяги.

При малых скоростях (крейсерских для транспортных самолетов) доля тяги от воздушных винтов значительно превышает вторую составляющую.

В ТВД часто используется комбинация компрессоров.

Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя.

Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности».

Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.

Преимущества турбовентиляторного двигателя от турбореактивного таковы: во‑первых, если большая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во‑вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.

Туробореактивные двигатели ставят на самолеты с требованием значительной скорости и соответственно мощности.

Конструкция двухконтурных турбореактивных двигателей обеспечивает поступление воздуха в значительных количествах, что на высоких скоростях обеспечивает большую тягу. Второй контур, контур низкого давления, таким образом, дает дополнительную силу тяги. Соотношение двух составляющих общей тяги зависит от конструкции двигателей и режимов работы.

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Передача тяги на самолет

Тяга двигателя действует по оси двигателя. Самолет «удерживает» двигатель на внешнем кожухе двигателя на некотором расстоянии от оси двигателя (у опор двигателя). Такое расположение приводит к изгибу корпуса двигателя (известному как изгиб каркаса) и деформации круглых корпусов ротора (овализации). Деформацию конструкции двигателя необходимо контролировать с помощью подходящих мест крепления, чтобы поддерживать приемлемые зазоры ротора и уплотнения и предотвращать трение. Широко разрекламированный пример чрезмерной структурной деформации произошел с оригинальной установкой двигателя Pratt & Whitney JT9D на самолете Boeing 747 . Способ монтажа двигателя должен быть пересмотрен с добавлением дополнительной тяги рамы , чтобы уменьшить прогиб кожуха до приемлемого количества.

Устройство

Первый контур вмещает в себя компрессоры высокого и низкого давления, камеру сгорания, турбины высокого и низкого давления и сопло. Второй контур состоит из направляющего аппарата и сопла. Такая конструкция является базовой, но возможны и некоторые отклонения, например, потоки внутреннего и внешнего контура могут смешиваться и выходить через общее сопло, или же двигатель может оснащаться форсажной камерой.

Теперь коротко о каждом составляющем элементе ТРДД. Компрессор высокого давления (КВД) – это вал, на котором закреплены подвижные и неподвижные лопатки, формирующие ступень. Подвижные лопатки при вращении захватывают поток воздуха, сжимают его и направляют внутрь корпуса. Воздух попадает на неподвижные лопатки, тормозится и дополнительно сжимается, что повышает его давление и придает ему осевой вектор движения. Таких ступеней в компрессоре несколько, а от их количества напрямую зависит степень сжатия двигателя. Такая же конструкция и у компрессора низкого давления (КНД), который расположен перед КВД. Отличие между ними заключается только в размерах: у КНД лопатки имеют больший диаметр, перекрывающий собой сечение и первого и второго контура, и меньшее количество ступеней ( от 1 до 5).

В камере сгорания сжатый и нагретый воздух перемешивается с топливом, которое впрыскивается форсунками, а полученный топливный заряд воспламеняется и сгорает, образуя газы с большим количеством энергии. Камера сгорания может быть одна, кольцевая, или же выполняться из нескольких труб.

Турбина по своей конструкции напоминает осевой компрессор: те же неподвижные и подвижные лопатки на валу, только их последовательность изменена. Сначала расширенные газы попадают на неподвижные лопатки, выравнивающие их движение, а потом на подвижные, которые вращают вал турбины. В ТРДД турбин две: одна приводит в движение компрессор высокого давления, а вторая – компрессор низкого давления. Работают они независимо и между собой механически не связаны. Вал привода КНД обычно расположен внутри вала привода КВД.

Сопло – это сужающаяся труба, через которую выходят наружу отработанные газы в виде реактивного потока. Обычно каждый контур имеет свое сопло, но бывает и так, что реактивные потоки на выходе попадают в общую камеру смешения.

Внешний, или второй, контур – это полая кольцевая конструкция с направляющим аппаратом, через которую проходит воздух, предварительно сжатый компрессором низкого давления, минуя камеру сгорания и турбины. Этот поток воздуха, попадая на неподвижные лопасти направляющего аппарата, выравнивается и движется к соплу, создавая дополнительную тягу за счет одного только сжатия КНД без сжигания топлива.

Форсажная камера – это труба, размещенная между турбиной низкого давления и соплом. Внутри у нее установлены завихрители и топливные форсунки с воспламенителями. Форсажная камера дает возможность создания дополнительной тяги за счет сжигания топлива не в камере сгорания, а на выходе турбины. Отработанные газы после прохождения ТНД и ТВД имеют высокую температуру и давления, а также значительное количество несгоревшего кислорода, поступившего из второго контура. Через форсунки, установленные в камере, подается топливо, которое смешивается с газами, и воспламеняется. В результате тяга на выходе возрастает порой в два раза, правда, и расход топлива при этом тоже растет. ТРДД, оснащенные форсажной камерой, легко узнать по пламени, которое вырывается из их сопла во время полета или при запуске.

форсажная камера в разрезе, на рисунке видны завихрители.

Самым важным параметром ТРДД является степень двухконтурности (к) – отношение количества воздуха, прошедшего через второй контур, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более экономичным будет двигатель. В зависимости от степени двухконтурности можно выделить основные виды двухконтурных турбореактивных двигателей. Если его значение к<2, это обычный ТРДД, если же к>2, то такие двигатели называются турбовентиляторными (ТВРД). Есть также турбовинтовентиляторные моторы, у которых значение достигает и 50-ти, и даже больше.

В зависимости от типа отведения отработанных газов различают ТРДД без смешения потоков и с ним. В первом случае каждый контур имеет свое сопло, во втором газы на выходе попадают в общую камеру смешения и только потом выходят наружу, образуя реактивную тягу. Двигатели со смешением потоков, которые устанавливаются на сверхзвуковые самолеты, могут снабжаться форсажной камерой, которая позволяет увеличивать мощность тяги даже на сверхзвуковых скоростях, когда тяга второго контура практически не играет роли.

Турбореактивный двигатель с форсажной камерой

Рис. 2. Схема ТРДФ. 1 – турбокомпрессор; 2 – блок форсажной камеры; 3 – сопло; 4 – форсажная камера; 5 – стабилизаторы пламени.

Турбореактивный двигатель с форсажной камерой (ТРДФ) (рис. 2) широко применяется на скоростных боевых самолётах.

Как и в ТРД, основу внутреннего контура ТРДФ составляет турбокомпрессор (газогенератор), включающий в себя компрессор, камеру сгорания и турбину. Между турбокомпрессором и соплом (обычно регулируемым, т. е. с изменяемой площадью потока) установлена форсажная камера, в которой сжигается дополнительное горючее (керосин), подаваемое через форсунки форсажной камеры. Стабилизаторы пламени обеспечивают устойчивое горение обеднённой кислородом топливной смеси (часть кислорода воздуха использована при горении керосина в камере сгорания турбокомпрессора). За счёт сжигания дополнительного топлива происходит увеличение тяги (форсирование, форсаж – франц. forçage, от forcer – вынуждать, чрезмерно напрягать) на 50% и более, что связано, однако, с резким повышением расхода топлива. Поэтому режим форсажа используется кратковременно на взлёте для сокращения длины разбега и в воздушном бою для увеличения скороподъёмности и скорости полёта. Использование форсажных режимов на крейсерском полёте экономически невыгодно.

Основными характеристиками двигателя любого типа являются: масса двигателя $m_{дв}$ и его габариты; стартовая тяга двигателя $P_{дв0}$; удельная масса двигателя $g_{дв} = m_{дв}/P_{дв0}$ (кг/Н); удельный расход двигателя $C_р$,  показывающий расход массы топлива на создание 1Н  тяги в час, [кг/(Н×ч)]; высотно-скоростные  характеристики  $P = f(H, V)$ и $C_р = f(H,V)$; ресурс двигателя.

Качественный характер высотно-скоростных характеристик ГТД включает тяговые и высотные характеристики, которые определяются главным образом степенью повышения давления в компрессоре, степенью двухконтурности и температурой газа перед турбиной.

Потребная для определённых условий полёта тяга (мощность) обеспечивается выбором соответствующего режима работы силовой установки. Лётчик управляет режимом работы двигателя с помощью рычага управления двигателем (РУД), перемещение которого регулирует, т. е. увеличивает или уменьшает – дросселирует (от нем. drosseln – душить, сокращать), расход топлива.

Большинство современных пассажирских самолётов оборудуются вспомогательной силовой установкой (ВСУ) – небольшим ГТД, вся мощность которого используется не для создания тяги, а для снабжения энергией бортовых систем самолёта. При стоянке на земле ВСУ обеспечивает работу электросистем, радиооборудования, системы кондиционирования самолёта, техническое обслуживание самолёта и его систем, запуск основных двигателей, что делает самолёт независимым от аэродромных источников энергии. ВСУ может применяться и как источник энергии в аварийных ситуациях в полёте.

Разновидность ТРД – турбовентиляторный двигатель.

Двигатель самолёта является основным источником шума в кабине и на местности. Для удовлетворения требований по уровню допустимого шума в конструкции самолёта используют материалы и устройства, изолирующие источник шума или поглощающие шум. Звукоизоляционные прокладочные материалы ограждают источник шума и ослабляют звук при его проникновении через ограждение (см. в статье ).

Принцип действия турбореактивного двигателя

Академическое понятие ТРД выглядит так:Турбореактивный двигатель — газотурбинный двигатель, в котором химическая энергия топлива преобразуется в кинетическую энергию струй газов, вытекающих из реактивного сопла.

Поясним некоторые моменты: газотурбинный двигатель — это основа любого ТРД, рассматривая далее виды турбореактивных двигателей, данный факт будет хорошо прослеживаться. Под химической энергией имеется в виду высвобождение большого количества теплоты за счет сгорания топлива в присутствии кислорода. Что же касается сопла, то струя газа не всегда имеет максимальную кинетическую энергию при выходе из него, почему — рассмотрим далее.

Основной принцип работы любого газотурбинного двигателя — тепловое расширение воздуха за счет сгорания топлива, и как следствие образование реактивной струи — быстродвижущегося потока газов.

Как это работает

Турбина — это колесо с лопатками (своего рода лопастями), направленных к потоку газов под некоторым углом. Соответственно чем быстрее движется этот поток, тем большее усилие воздействует на лопатки, заставляя их поворачивать турбинное колесо. Надо сказать, что справедливо и обратное утверждение: если турбинное колесо вращается не за счет реактивной струи, то лопатки начинают увлекать за особой воздушный поток, словно вентилятор. Кстати лопасти винта самолета, мельницы или ветрогенератора используют похожий принцип, что и турбинное колесо, только в последнем случае давление, температура и скорость потока куда выше.

Обратите внимание на иллюстрацию работы классической турбореактивной установки, или иначе говоря газотурбинной установки. Мы видим общий вал, на котором расположены кольца (колеса) с лопатками (их все можно также назвать турбинными кольцами (колесами), так как они ни чем не отличаются)

С левой стороны изображена «холодная» а справа «горячая» части турбины. Давайте рассмотрим рабочий процесс данного двигателя, слева на право, с самого момента запуска:

  • Изначально окружающий воздух через воздухозаборник контактирует с компрессором низкого давления. Специальный турбостартер (в случае больших двигателей) за счет создания высокого давления воздуха, подаваемого на лопатки одного из турбинных колец, раскручивает вал турбины, приводя в движение компрессор низкого и высокого давления, а также турбинные колеса.
  • Лопатки компрессора низкого давления начинают «проталкивать» воздушный поток к лопаткам компрессора более высокого давления, которое в свою очередь перемещает воздух к следующему компрессору, и с каждым последующим переходом давление воздуха продолжает расти, а также растет и скорость потока. Проходя через лопатки последнего компрессора поток оказывается в просторной камере сгорания, в которой расположены топливные форсунки и свечи для поджига топлива, словно в автомобиле, только гораздо мощнее.
  • Как только давление и скорость потока воздуха достигнут необходимых показателей, через форсунки начинает подаваться жидкий керосин, либо любой горючий газ, а свечи зажигания дают искру. После воспламенения топлива в камере сгорания резко возрастает давление, так как весь объем газовой смеси (включая воздушную смесь), вынужден увеличиться в несколько сотен раз за счет температурного расширения. В этот момент турбостартер (или электростартер), раскручивающий вал турбины, отключается.
  • Весь горячий газ из камеры сгорания под огромным давлением и скоростью встречает на своем пути главную часть двигателя — турбинные колеса, которые вращают вал всей турбины (либо напрямую, либо через редуктор). За счет того, что турбинные колеса изначально вращаются гораздо медленнее, не соответствуя скорости только что разогретого в камере сгорания газа, поток начинает раскручивать турбину, теряя при этом часть кинетической энергии. Таким образом турбина работает самостоятельно, без участия стартера.
  • Пройдя последнее турбинное колесо поток газа вырывается наружу через специально созданное сужение, называемое соплом. За счет сужения скорость потока газа увеличивается еще немного, что создаст большую реактивную силу.

Турбореактивный двигатель

Как работает авиационный двигатель — простым языком.

 То что вы видите под крылом — это не турбина, а именно авиационный двигатель, а турбина — это его составная часть.

Авиационный турбовентиляторный реактивный двигатель необходим для создания тяги, которая преодолеет сопротивление воздуха, сопротивление самолета и его частей, разгонит самолет до скорости, на которой вырастет подъемная сила, способная оторвать самолет от земли и унести его с полной загрузкой в небо.

Передняя часть двигателя называется воздухозаборник. Воздух, попадая в него, начинает частично сжиматься. Далее воздух попадает на ступени вентилятора и ряд лопаток, где его давление и температура от сжимания начинает расти.

Воздух дальше идет по двум контурам. Внешний контур сжимает воздух благодаря своей форме. Воздух, который пошел во внутренний контур все больше сжимается, проходя каждый ряд статичных и крутящихся лопаток, сделанных из титана.

В компрессоре высокого давления он сжимается и его температура растет. И вот воздух попадает в камеру сгорания, где он смешивается с топливом. В результате этого резко растет тепловая энергия.⠀

Разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее в вращение.Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться и получается замкнутая цепь. Воздух вновь засасывается компрессором и процесс продолжается.

Далее происходит следующее: разогретые до огромной температуры газы выходят с бешеной скоростью из камеры сгорания и расширяются. Попадая на колесо турбины, они приводят ее во вращение.

Турбина сидит на одном валу с компрессором. Компрессор начинает вращаться. Получается замкнутая цепь: воздух вновь засасывается компрессором, и процесс повторяется.

Выходящие газы попадают в сопло и на выходе из него смешиваясь с воздухом с внешнего контура создают реактивную струю, которая и толкает самолет сквозь воздушную среду. 

Крутящий момент

Крутящий момент характеризует способность ускоряться и преодолевать препятствия

Крутящий момент (момент силы) — это произведение силы на плечо рычага. В случае кривошипно-шатунного механизма, данной силой является сила, передаваемая через шатун, а рычагом — кривошип коленчатого вала. Единица измерения — Ньютон-метр.

Иными словами, крутящий момент характеризует силу, с которой будет вращаться коленвал, и насколько успешно он будет преодолевать сопротивление вращению.

На практике высокий крутящий момент двигателя будет особенно заметен при разгонах и при передвижении по бездорожью: на скорости машина легче ускоряется, а вне дорог — двигатель выдерживает нагрузки и не глохнет.

Мифы о турбонаддуве в двигателе

Среди водителей много мифов о работе системы турбонаддува. Рассмотрим основные стереотипы и узнаем, почему они ложные:

Миф 1 – систему турбонаддува можно снять в любой момент без негативных последствий Конструкция и объемы камеры ДВС адаптированы под применение турбины. Если демонтировать это устройство, уменьшается крутящий момент и мощность движка, а расходы топлива увеличиваются
Миф 2 – двигатели с турбонаддувом ломаются гораздо чаще атмосферных Движки с турбиной имеют такой же срок годности, что и обычные атмосферные двигатели. Чтобы снизить риск растрескивания движка при высоких скоростях, они дополнительно усиливаются металлическими листами-вкладышами в проблемных местах
Миф 3 – турбина быстро выходит из строя, ее придется часто менять Согласно современным стандартам срок годности турбины аналогичен или даже немного превышает срок годности самого ДВС. При соблюдении базовых правил вождения и ухода турбонаддув будет работать столько же, сколько и сам автомобиль
Миф 4 – за турбиной нужен специальный бережный уход, чтобы она не ломалась Чтобы турбонаддув работал долго, достаточно будет придерживаться базовых правил эксплуатации авто. А именно – вовремя меняйте масло, следите за уровнем давления в движке (не доводите до красной отметки), вовремя устраняйте неисправности

Подведем итоги. Турбина (турбонаддув) – это вспомогательный элемент двигателя, с помощью которого осуществляется принудительное нагнетание воздуха в камеру внутреннего сгорания двигателя. Устройство запускается сразу же после активации двигателя, но действует правило – чем выше обороты, тем больше нагнетание (на низких оборотах нагнетание практически незаметно). Основные проблемы с турбиной – выход из строя клапана, негерметичное крепление запчасти, использование некачественного масла.

Принцип работы

Принцип работы ТВРД заключается в следующем. Поток воздуха захватывается вентилятором и, частично сжимаясь, направляется по двум направлениям: в первый контур к компрессору и во второй  на неподвижные лопатки. Вентилятор при этом играет роль не винта, создающего тягу, а компрессора низкого давления, увеличивающего количество воздуха, проходящего через двигатель. В первом контуре поток сжимается и нагревается при проходе через компрессор высокого давления и попадает в камеру сгорания. Здесь он смешивается с впрыснутым топливом и воспламеняется, в результате чего образуются газы с большим запасом энергии. Поток расширяющихся горячих газов направляется на турбину высокого давления и вращает ее лопатки. Эта турбина вращает компрессор высокого давления, который закреплен с ней на одном валу. Далее газы вращают турбину низкого давления, приводящую в движение вентилятор, после чего попадают в сопло и вырываются наружу, создавая реактивную тягу.

В это же время во втором контуре поток воздуха, захваченный и сжатый вентилятором, попадает на неподвижные лопатки, выпрямляющие направление его движения так, чтобы он перемещался в осевом направлении. При этом воздух дополнительно сжимается во втором контуре и выходит наружу, создавая дополнительную тягу. Так же на тягу влияет сжигание кислорода воздуха второго контура в форсажной камере.

СВЯЗЬ УДЕЛЬНЫХ ПАРАМЕТРОВ ТРД И ТРДД С ПАРАМЕТРАМИ РАБОЧЕГО ПРОЦЕССА

Совершенство авиационного двигателя оценивается его удельными параметрами Руд, Суд и gдв, которые зависят от параметров рабочего процесса: π, Δ, ηс, ηр и ηΙΙ. Установим связь удельных параметров двигателя с параметрами его рабочего процесса.

Рассмотрим вначале ТРДД с раздельными контурами при упрощающем предположении, что скорость истечения газа из внутреннего контура равна скорости истечения воздуха из наружного контура, т. е. ссΙ = ссΙΙ = сс и ηΙΙ= 1. Тогда удельная тяга двигателя при полном расширении газа в соплах Руд = ссV.

Определив скорость истечения сс из формулы (1.7) для Lц и подставив ее значение в выражение для Руд, получим

Выражение для удельной тяги ТРД можно получить из этой формулы, приняв значение m = 0.

Ранее была установлена связь между удельным расходом топлива и полным КПД ТРД и ТРДД в следующем виде (см. формулу 1.12):

Таким образом, при заданном значении степени двухконтурности m, скорости и высоты полета термодинамические параметры рабочего процесса π, Δ, ηс, и ηр влияют на Руд и Суд через Lц и ηп.

ЗАВИСИМОСТЬ УДЕЛЬНОЙ ТЯГИ И УДЕЛЬНОГО РАСХОДА ТОПЛИВА ТРД И ТРДД ОТ СТЕПЕНИ ПОВЫШЕНИЯ

ДАВЛЕНИЯ В ЦИКЛЕ

Для упрощения анализа в этом параграфе будем считать, что КПД процессов сжатия и расширения постоянны.

Зависимость Руд и Судот π для одноконтурных двигателей

Как следует из формулы (1.20), удельная тяга одноконтурных двигателей (m = 0) при заданной скорости полета V определяется лишь значением Lц. Поэтому характер ее зависимости от π при заданных Δ, ηс, и ηр определяется только характером зависимости Lц от π.

Как видно из рис. 1.17, Руд достигает максимального значения при π=πопт, при котором Lц максимальна, и равняется нулю при значениях π = 1 и π=π 2 опт, при которых Lц = 0.

Рис. 1.17. Качественная зависимость Руд от π Рис. 1.18. Качественное влияние π и Δ на Руд

На рис. 1.18 представлена качественная зависимость Руд от π при различных значениях Δ. Как видно, увеличение Δ приводит к увеличению Lц, а следовательно, и Руд. Таким образом, эффективным средством повышения удельной тяги ТРД является повышение Δ = Тг*/ТН за счет увеличения температуры газов перед турбиной Тг*. Кроме того, Руд увеличивается при снижении ТН из-за снижения

температуры окружающего воздуха. Заметим, что при увеличении Δ также

возрастает и значение πопт .

п

Рис. 1.19. Качественная зависимость Суд, Руд и ηп от π Рис. 1.20. Влияние степени двухконтурности на Руд

Поэтому характер зависимости Суд от π определяется ранее установленной зависимостью от π полного КПД ТРД (рис. 1.19). В соответствии с этой зависимостью, Суд достигает минимального значения при некотором значении π, которое назовем экономической степенью повышения давления в цикле и обозначим πэк. При этом значении π полный КПД максимален и снижается при отклонении π от πэк. Как видно, значение πэк значительно превышает πопт. Увеличение π сверх оптимального значения позволяет снизить удельный расход топлива ТРД.

Зависимость Руд и Суд от π для двухконтурных двигателей

Для упрощения анализа указанных зависимостей будем считать, что расширение в соплах ТРДД с раздельными контурами полное, и, как уже ранее принято, скорости истечения газа и воздуха из них одинаковы, т.е. ссI=ссII=сс. При этих условиях удельная тяга ТРДД Руд = ссV .

Если сравнивать зависимости Руд от π двухконтурных и одноконтурных двигателей с одинаковыми параметрами цикла, то, как видно из рис. 1.20, увеличение m приводит к снижению Руд. Это связано с тем, что при одинаковой Lц у этих двигателей скорость истечения газов в ТРДД, как следует из формулы для Lц,

ниже, чем в ТРД, т. к. в двухконтурном двигателе та же работа цикла распределяется между двумя контурами. Причем, чем выше степень двухконтурности, тем ниже сс и Руд. Но оптимальная степень повышения давления

m

Так как

пвнтягСуд

Рис. 1.21. Зависимость КПД и Суд от π

Тяговый КПД ТРДД

бвгг

Чем выше степень двухконтурности, тем ниже Суд, что при неизменном внутреннем КПД объясняется повышением тягового КПД из-за снижения потерь с выходной скоростью в результате уменьшения скорости истечения сс.

Как увеличить момент?

Если нужно улучшить динамику автомобиля, можно применить несколько способов. Это увеличение объема, установка наддува, а также изменения газодинамики.

Рабочий объем мотора можно увеличить заменой коленчатого вала с большим эксцентриком либо при помощи расточки цилиндров. Замена коленвала зачастую требует определенных затрат, и нужную модель очень трудно подобрать.

Гораздо выгоднее расточить цилиндры. Стенки вполне допускают такое мероприятие. При этом можно даже обойтись серийными поршнями. Однако не факт, что такая замена обойдется дешевле, нежели замена коленчатого вала.

Дополнительный наддув можно применить лишь там, где уже стоит турбина. Этот способ требует дополнительных изменений. Изменить наддув можно поднятием планки для стравливания давления. Также вместе с этим придется дополнительно усовершенствовать камеры сгорания, менять систему охлаждения, радиаторы, воздухозаборники.

Можно обойтись и менее радикальным чип-тюнингом. Так, при помощи перепрошивки электронного блока вполне реально легко и просто изменить множество важных параметров и характеристик автомобиля.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: