Как увеличить мощность коллекторного электродвигателя

Типичные неисправности электродвигателей

Выделяют два вида неисправностей электродвигателей: электрические и механические.

К электрическим относятся неисправности, связанные с обмоткой:

  • межвитковое замыкание
  • замыкание обмотки на корпус
  • обрыв обмотки

Для устранения этих неисправностей требуется перемотка двигателя.

  • износ и трение в подшипниках
  • проворачивание ротора на валу
  • повреждение корпуса двигателя
  • проворачивание или повреждение крыльчатки обдува

Замена подшипников должна производиться регулярно с учетом их износа и срока службы. Крыльчатка также меняется в случае повреждения. Остальные неисправности устранению практически не подлежат, и единственный выход — замена двигателя.

Если у вас есть вопросы, ответы на которые вы не нашли в данной статье, напишите нам. Будем рады помочь!

При обычном подключении трехфазного асинхронного двигателя на одну фазу мощность двигателя и его крутящий момент значительно снижается, удается получить около 30% от номинальной мощности. Ниже мы рассмотрим причины снижения мощности и схемы включения двигателя, повышающие мощность и крутящий момент.

Для нормальной работы асинхронного трехфазного двигателя требуется подавать на каждую обмотку напряжение, сдвинутое по фазе относительно напряжения на других обмотках, так как фазы три то оно сдвигается на 120 0 . При обычном подключении трехфазного двигателя к однофазной сети , на одну обмотку подается фаза, на другую фаза сдвигается конденсатором, а третья обмотка подключается без сдвига фаз. Так вот третья обмотка создает момент вращения в противоположном направлении. Поэтому лучших результатов можно добиться, отключив одну обмотку. Так двигатель будет работать аналогично однофазному двигателю. Кстати у трехфазных двигателей часто сгорает одна обмотка, а две остаются целыми, такой двигатель можно здесь применить.

Подключаем эту обмотку через конденсатор

Еще лучших результатов можно добиться, если выводы третье обмотки поменять местами, так третья обмотка будет помогать создавая момент вращения в правильном направлении. Так можно получить больше 50% мощности от номинала. Эту обмотку двигателя желательно также подключить через конденсатор. Конденсаторы должны быть одинаковой емкости. Для того чтобы узнать правильно ли подобраны конденсаторы мерим напряжение на каждой обмотке, оно должно быть приблизительно равно. Подробнее о подборе конденсатора для подключения трехфазного асинхронного двигателя.

Здесь две обмотки подключены в противофазно на напряжение 220В

Ну, а 100% мощности от асинхронного двигателя можно получить используя частотный преобразователь, частотный преобразователь может работать на одной фазе выдавая три.

Как повысить мощность электродвигателя в домашних условиях

Итак, для проведения работ вам следует «вооружиться»:

  • набором проводов разного сечения;
  • тестером;
  • частотным преобразователем;
  • источником тока с изменяемой ЭДС.

Сначала необходимо подключить электродвигатель к имеющемуся у вас источнику тока и изменяемой ЭДС и увеличить ее значение

Напряжение в обмотках должно увеличиваться соответственно и поравняться со значением ЭДС (если не принимать во внимание потери в подводящих проводниках, но они незначительны)

Для расчета увеличения мощности двигателя определите значение увеличения напряжения и возведите эту цифру в квадрат. Например, если напряжение на обмотках выросло в два раза (со 110В до 220В), мощность двигателя увеличилась в четыре раза.

Иногда самый рациональный способ повысить мощность электродвигателя – перемотать обмотку. Во многих моделях это медный проводник. Вам следует взять провод из того же материала и той же длины, но большего сечения. Мощность двигателя (и ток в проводе) увеличатся во столько же раз, во сколько снизится сопротивление обмотки. Следите за тем, чтобы напряжение на обмотках оставалось неизменным.

Расчет в этом случае тоже достаточно прост. Разделите большую цифру сечения провода на меньшую. Если провод сечением 0.5 мм заменен проводом сечением 0.75 мм, показатель мощности вырастает в 1.5 раза.

Если вы включаете асинхронный трехфазный двигатель в однофазную бытовую сеть, на первую обмотку подается фаза, на второй фаза сдвигается конденсатором, на третьей сдвиг фаз отсутствует. Именно последняя обмотка создает момент вращения в противоположном направлении (тормозящий момент). Увеличить полезную мощность двигателя в этом случае можно путем отключения третьей обмотки. Это приведет к исчезновению тормозящего момента, генерируемого при работе всех обмоток, и, соответственно, повышению мощности. Данный метод удобен в том случае, когда одна обмотка у двигателя уже сгорела – двух оставшихся вам вполне хватит для подключения и обеспечения работы агрегата.

Еще лучшего результата вы достигнете, поменяв местами выводы третьей обмотки и создав таким образом момент вращения в правильном направлении. В этом случае двигатель «выдаст» более 50% мощности от номинала. Эту обмотку рекомендуется подключать через конденсатор с правильно подобранной емкостью.

У асинхронного двигателя переменного тока мощность можно увеличить, присоединив к нему частотный преобразователь, который повысит частоту переменного тока в обмотках. Значение мощности в этом случае фиксируется с помощью тестера, поставленного на режим ваттметра. Существует два вида преобразователей частоты, отличающиеся принципом работы и устройством:

  • Приборы с непосредственной связью (выпрямители). Они не подходят для мощного оборудования, но с небольшим двигателем, использующимся в быту, способны «справиться». С помощью такого устройства осуществляется подключение обмотки к сети. Выходное напряжение, образованное им, имеет частоту от 0 до 30 Гц. При этом управлять скоростью вращения привода можно только в ограниченном диапазоне.
  • Приборы с промежуточным звеном постоянного тока. Они производят двухступенчатое преобразование энергии – выпрямление входного напряжения, его фильтрацию и сглаживание и последующую трансформацию в напряжение с требуемой частотой и амплитудой при помощи инвертора. В процессе преобразования КПД оборудования может быть несколько снижен. Благодаря возможности обеспечивать плавную регулировку оборотов и выдавать на выходе напряжение с достаточно высокой частотой, преобразователи данного типа более востребованы и широко применяются в быту и на производстве.

Произведя необходимые расчеты и выбрав наиболее эффективный в вашем случае способ, вы сможете заставить двигатель работать с нужной вам мощностью

Не забывайте о мерах предосторожности

Какие исполнения двигателей бывают?

В зависимости от исполнения электродвигатели классифицируются по способу монтажа, классу защиты, климатическому исполнению. Существует два основных способа монтажа асинхронных электродвигателей – на лапах и через фланец. Оба варианта исполнения в различных комбинациях показаны в таблице ниже.

Виды климатического исполнения предполагают использование двигателя в определенных климатических зонах: умеренный климат (У), холодный климат (ХЛ), умеренно-холодный климат (УХЛ), тропический климат (Т), общеклиматическое исполнение (О), общеклиматическое морское исполнение (ОМ), всеклиматическое исполнение (В). Также различают категории размещения (на открытом воздухе, под навесом или в помещении и т.д.).

Класс защиты обозначает характер защиты двигателя от попадания пыли и влаги. Наиболее часто встречаются приводы с классами IP55 и IP55.

Синхронные и асинхронные электромашины

Двигатели переменного напряжения есть трёх типов: синхронные, угловая скорость ротора которых совпадает с угловой частотой магнитного поля статора; асинхронные – в них вращение ротора отстаёт от вращения поля; коллекторные, конструкция и принцип действия которых аналогичны двигателям постоянного напряжения.

Синхронная скорость

Скорость вращения электромашины переменного тока зависит от угловой частоты магнитного поля статора. Эта скорость называется синхронной. В синхронных двигателях вал вращается с той же быстротой, что является преимуществом этих электромашин.

Для этого в роторе машин большой мощности есть обмотка, на которую подаётся постоянное напряжение, создающее магнитное поле. В устройствах малой мощности в ротор вставлены постоянные магниты, или есть явно выраженные полюса.

Скольжение

В асинхронных машинах число оборотов вала меньше синхронной угловой частоты. Эта разница называется скольжение «S». Благодаря скольжению в роторе наводится электрический ток, и вал вращается. Чем больше S, тем выше вращающий момент и меньше скорость. Однако при превышении скольжения выше определённой величины электродвигатель останавливается, начинает перегреваться и может выйти из строя. Частота вращения таких устройств рассчитывается по формуле на рисунке ниже, где:

  • n – число оборотов в минуту,
  • f – частота сети,
  • p – число пар полюсов,
  • s – скольжение.

Формула расчёта скорости асинхронного двигателя

Такие устройства есть двух типов:

  • С короткозамкнутым ротором. Обмотка в нём отливается из алюминия в процессе изготовления;
  • С фазным ротором. Обмотки выполнены из провода и подключаются к дополнительным сопротивлениям.

Регулировка частоты вращения

В процессе работы появляется необходимость регулировки числа оборотов электрических машин. Она осуществляется тремя способами:

  • Увеличение добавочного сопротивления в цепи ротора электродвигателей с фазным ротором. При необходимости сильно понизить обороты допускается подключение не трёх, а двух сопротивлений;
  • Подключение дополнительных сопротивлений в цепи статора. Применяется для запуска электрических машин большой мощности и для регулировки скорости маленьких электродвигателей. Например, число оборотов настольного вентилятора можно уменьшить, включив последовательно с ним лампу накаливания или конденсатор. Такой же результат даёт уменьшение питающего напряжения;
  • Изменение частоты сети. Подходит для синхронных и асинхронных двигателей.

Особенности эксплуатации двигателей с частотными преобразователями

Как уже сказано выше, используя частотный преобразователь для электродвигателя, снижаем потери мощности за счет снижения реактивной составляющей тока. Кроме того, есть некоторые моменты, которые необходимо знать:

  • При работе на сниженных оборотах возможен перегрев двигателя. Это происходит за счет снижения скорости естественного обдува. Особенно заметен перегрев на скоростях, близких к номинальным. Для снижения температуры в таком случае желательно использовать дополнительный обдув.
  • При работе стандартного электромотора (на 50 Гц) на повышенных скоростях вращения, стоит учитывать состояние подшипников. Из-за возникающей более сильной вибрации они быстрее выходят из строя. Для нивелирования этого явления можно использовать виброгасящие подкладки. Кроме того, частоту надо выбирать так, чтобы не возникало резонанса. И учтите: на повышенных скоростях шуметь вентилятор электромотора будет больше.

  • При снижении частоты вращения вала, для нормальной работы необходимо пропорционально снижать нагрузку. Асинхронный двигатель обеспечивает максимальный крутящий момент только на номинальной частоте вращения. Поэтому с уменьшением частоты, он падает.
  • Для длительной работы на сниженных оборотах используют электродвигатели со сниженной номинальной частотой — от 750 об/мин до 1500 об/мин. Второй вариант — двигатели с завышенной мощностью.
  • Если частотный преобразователь выбираете для погружного насоса, необходимо выбор делать не только по мощности, но и по току. У двигателей для этой категории насосов номинальный ток значительно выше. При большой длине кабеля от ПЧ до насоса, напряжение может значительно понижаться, что ведет к снижению скорости вращения вала электродвигателя. Чтобы падение было менее значительным, используют кабель с завышенным сечением проводников.

Частотный преобразователь для электродвигателя расширяет возможности его использования

Это важно, но не менее важно правильно его подобрать, учитывая все особенности работы. Это гарантирует длительную эксплуатацию обоих устройств

Что нам дает увеличение мощности

В первую очередь хотелось бы разобраться в том, что такое мощность и на какие показатели влияет крутящий момент двигателя.

Многие автовладельцы ошибочно полагают, что мощность является самым важным показателем, так как она непосредственно влияет на динамику автомобиля, то есть скорость его разгона. Однако большинство специалистов сходятся во мнении, что лошадиные силы в большей степени влияют на максимальную скорость и на показатель интенсивности разгона при загруженности автомобиля.

А вот именно крутящий момент двигателя отвечает за динамику автомобиля и скорость разгона. Поэтому при увеличении мощности силового агрегата вам необходимо одновременно улучшать показатель лошадиных сил и крутящий момент двигателя.

Существует множество различных способов увеличения мощности автомобиля. Все их можно условно разделить на:

  1. установку дополнительных спортивных запчастей;
  2. глубокий инженерный тюнинг.

Расскажем более подробно как увеличить мощность двигателя и не уменьшить, при этом, надежность силового агрегата.

Для схемы «ТРЕХФАЗНЫЙ ДВИГАТЕЛЬ В ОДНОФАЗНОЙ СЕТИ»

Бытовая электроникаТРЕХФАЗНЫЙ ДВИГАТЕЛЬ В ОДНОФАЗНОЙ СЕТИВ.БАШКАТОВ, 338046, Украина, Донецкая обл., г. Горловка-46, ул.Кирова, 14 «А» -42 Иногда в домашних условиях возникает необходимость подключения трехфазного электродвигателя переменноготока в однофазную сеть. Возникла такая необходимость и у меня при подключении промышленной швейной машины. На швейной фабрике такие машины работают в цехе, имеющем трехфазную сеть, и проблем не возникает. Первое, что пришлось сделать — это изменить схему подключения обмотокэлектродвигателя со «звезды» на «треугольник», соблюдая полярность соединения обмоток (начало — конец) (рис.1). Это переключение позволяет включать электродвигатель в однофазную сеть 220 В. Мощность электродвигателя швейной машины по табличке — 0,4 кВт. Приобрести рабочие, а тем более пусковые металлобумажные конденсаторы типа МБГО, МБГП, МБГЧ емкостью соответственно 50 и 100 мкф на рабочее напряжение 450…600 В оказалось задачей непосильной из-за их высокой стоимости на «блошином рынке». Схемы стрелочных индикаторов мощности Использование вместо металлобу-мажных полярных (электролитических) конденсаторов и мощных выпрямительных диодов Д242, Д246. положительного результата не дало. Электродвигатель упорно не запускался, по-видимому, из-за конечного сопротивления диодов в прямом направлении. Поэтому в голову пришла абсурдная с первого взгляда мысль запускаэлектродвигателя с помощью кратковременного подключения обычного электролитического конденсатора в сеть переменноготока (рис.2). После запуска (разгона)электродвигателя электролитический конденсатор отключается, и электродвигатель работает в двухфазном режиме, теряя при этом до 50% своей мощности. Но если загодя предусмотреть припас по мощности, или заведомо понятно, что такой припас существует (как в моем случае), то с этим недостатком можно смириться. Между прочим, и при работеэлектродвигателя с рабочим фазосдвигающим конденсатором электродвигатель также т… Смотреть описание схемы …

Как изготовить своими руками?

Существуют различные варианты схем регулировки. Приведём один из них более подробно.

Вот схема его работы:

Первоначально, это устройство было разработана для регулировки коллекторного двигателя на электротранспорте. Речь шла о таком, где напряжение питания составляет 24 В, но эта конструкция применима и для других двигателей.

Слабым местом схемы, которое было определено при испытаниях её работы, является плохая пригодность при очень больших значениях силы тока. Это связано с некоторым замедлением работы транзисторных элементов схемы.

Рекомендуется, чтобы ток составлял не более 70 А. В этой схеме нет защиты по току и по температуре, поэтому рекомендуется встроить амперметр и контролировать силу тока визуально. Частота коммутации составит 5 кГц, она определяется конденсатором C2 ёмкостью 20 нф.

При этом, рекомендуется подобрать величину R1 таким образом, чтобы правильно настроить работу регулятора. С выхода микросхемы, управляющий импульс поступает на двухтактный усилитель на транзисторах КТ815 и КТ816, далее идёт уже на транзисторы.

Печатная плата имеет размер 50 на 50 мм и изготавливается из одностороннего стеклотекстолита:

На этой схеме дополнительно указаны 2 резистора по 45 ом. Это сделано для возможного подключения обычного компьютерного вентилятора для охлаждения прибора. При использовании в качестве нагрузки электродвигателя, необходимо схему заблокировать блокирующим (демпферным) диодом, который по своим характеристикам соответствует удвоенному значению тока нагрузки и удвоенному значению питающего напряжения.

Работа устройства при отсутствии такого диода может привести к поломке вследствие возможного перегрева. При этом, диод нужно будет поместить на теплоотвод. Для этого, можно воспользоваться металлической пластиной, которая имеет площадь 30 см2.

Регулирующие ключи работают так, что потери мощности на них достаточно малы. В оригинальной схеме, был использован стандартный компьютерный вентилятор. Для его подключения использовалось ограничительное сопротивление 100 Ом и напряжение питания 24 В.

Собранное устройство выглядит следующим образом:

При изготовлении силового блока (на нижнем рисунке), провода должны быть присоединены таким образом, чтобы было минимум изгибов тех проводников по которым проходят большие токи.Мы видим, что изготовление такого прибора требует определённых профессиональных знаний и навыков. Возможно, в некоторых случаях имеет смысл воспользоваться покупным устройством.

Простейший вариант

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

https://youtube.com/watch?v=VMPs8joApjk

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

Как повысить обороты электродвигателя

Что произойдет с двигателем и его нагрузкой, если превысить номинальные обороты? Преобразователь Р700 от.

Читайте так же

Введение сопротивления в цепь ротора. Первые два способа регулировки скорости вращения асинхронного двигателя требуют или специального исполнения двигателя, или наличия специального преобразователя частоты и поэтому широкого распространения не получили. Третий способ регулировки скорости вращения асинхронных двигателей состоит в том, что во время работы двигателя в цепь обмотки ротора вводят сопротивление регулировочного реостата.

С увеличением активного сопротивления цепи ротора возрастает величина скольжения S, соответствующая заданному значению вращающего момента М (величина вращающего момента, развиваемого двигателем, равна моменту сопротивления на валу двигателя). Таким образом, вводя дополнительно активное сопротивление в цепь фазного ротора, мы увеличиваем скольжение S и, следовательно, снижаем скорость вращения ротора n. Как увеличить обороты электродвигателя; Как увеличить Частоту вращения асинхронного. Такой способ регулирования применим только для асинхронных двигателей с фазным ротором. Регулировочный реостат включают в цепь ротора так же, как и пусковой реостат. Разница между пусковым и регулировочным реостатом состоит в том, что регулировочный реостат рассчитан на длительное прохождение тока. Для двигателей, у которых производится регулировка скорости вращения путем изменения сопротивления в цепи ротора, пусковой и регулировочный реостаты объединяются в один пускорегулировочный реостат. Недостатком этого способа регулирования является то, что в регулировочном реостате происходит значительная потеря мощности, тем большая, чем шире регулировка скорости вращения двигателя.

Реверсирование асинхронных электродвигателей. Для изменения направления вращения (реверсирование) асинхронного двигателя следует поменять местами два любых провода из трех, идущих к обмоткам статора двигателя. Определить количество оборотов электродвигателя можно или как увеличить обороты. При этом меняется направление вращения магнитного поля статора и двигатель станет вращаться в другую сторону. Реверсирование двигателя может быть произведено при помощи переключателя (перекидного рубильника), магнитного пускателя и других устройств.

Торможение асинхронных двигателей. В условиях эксплуатации нередко возникает необходимость торможения двигателя с целью ускорить его остановку.

Торможение электродвигателей может быть механическим, электрическим и электромеханическим. Электромеханическое торможение производится при помощи ленточного или колодочного тормоза, действующего на тормозной шкив, закрепленный на валу двигателя. Ослабление ленты или колодок осуществляется тормозным электромагнитом, обмотка которого соединена параллельно с обмоткой статора двигателя.

Если при работе двигателя переключить две любые фазы, то при этом двигатель начнет развивать вращающий момент, направленный в обратную сторону. Вращение ротора замедляется. Когда скорость вращения приближается к нулю, следует отключить двигатель от сети, в противном случае под действием развиваемого момента он начнет вращаться в противоположном направлении. Применяются и другие способы электрического торможения асинхронных электродвигателей.

Некоторые ситуации требуют изменения оборотов двигателя от номинальных. Иногда требуется уменьшить обороты электродвигателя, потому что их увеличение негативно сказывается на подшипниковом аппарате. Способы изменения вращения зависят от модели электрической машины.

Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

  • Простейший вариант
  • В цепи якоря

Для низкого напряжения

От сети
Коллекторные машины
Двухфазный двигатель
Обычные асинхронники
Измерения

Вращательный момент

Этот термин имеет несколько синонимов: момент силы, момент двигателя, Вращательный момент, вертящий момент. Все они используются для обозначения одного показателя, хотя с точки зрения физики эти понятия не всегда тождественны.

В целях унификации терминологии были разработаны стандарты, которые приводят все к единой системе. Поэтому в технической документации всегда используются словосочетание «крутящий момент». Он представляет собой векторную физическую величину, которая равна произведению векторных значений силы и радиуса. Вектор радиуса проводится от оси вращения к точке приложенной силы. С точки зрения физики разница между крутящим и вращательным моментом заключается в точке прикладывания силы. В первом случае это внутреннее усилие, во втором — внешнее. Измеряется величина в ньютон-метрах. Однако в формуле мощности электродвигателя крутящий момент используется как основное значение.

Рассчитывается он как

M = F × r, где:

M — крутящий момент, Нм;

F — прикладываемая сила, H;

r — радиус, м.

Для расчета номинального вращающего момента привода используют формулу

Мном = 30Рном ÷ pi × нном, где:

Рном — номинальная мощность электрического двигателя, Вт;

нном — номинальное число оборотов, мин-1.

Соответственно, формула номинальной мощности электродвигателя бедует выглядеть следующим образом:

Рном = Мном * pi*нном / 30.

Обычно все характеристики указаны в спецификации. Но бывает, что приходится работать с совершенно новыми установками, информацию о которых найти очень сложно. Для расчета технических параметров таких устройств берут данные их аналогов. Также всегда известны только номинальные характеристики, которые даются в спецификации. Реальные данные необходимо рассчитывать самостоятельно.

Как увеличить или уменьшить обороты электродвигателя?

Управление скоростью вращения двигателя необходимо в трех режимах работы – при разгоне, торможении, и в рабочем режиме.

Наиболее универсальный способ управления оборотами — использование частотного преобразователя. Настройками ПЧ можно добиться любой частоты вращения в пределах технической возможности. При этом можно управлять и другими параметрами электродвигателя, а также следить за его состоянием во время работы. Частоту можно менять и плавно, и ступенчато.

Управление оборотами двигателя в режиме разгона и торможения возможно при использовании УПП. Это устройство позволяет значительно снизить пусковой ток за счет плавного разгона с медленным увеличением оборотов.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания

Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря

Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector