Способы увеличения мощности электродвигателя

Тюнинг системы впуска

Улучшение впуска представляет собой уменьшение сопротивления поступающего воздуха в цилиндры. Это не сильно сложная доработка, но она требует изменение или добавление большого количества деталей, которые вместе дадут неплохой результат.

Установка или замена ресивера

Ресивер для лучшей мощности двигателя имеет большой объем и короткие впускные патрубки. Установка этой детали дает хороший результат и поэтому ее можно поставить даже при легкой доработке мотора. Данная деталь сглаживает пульсации воздуха. Из-за того, что впускные трубопроводы короткие, максимальное наполнение цилиндров смещается на большие обороты, тем самым лошади и крутящий момент станут больше только на высоких оборотах, а на низких немного снижаемся. Можно добиться того, что у вас прирастет только крутящий момент на низких оборотах, но при этом тяга мотора во всем диапазоне станет меньше.

Также можно установить впускную систему у которой изменяется геометрия каналов, чтобы цилиндры наполнялись воздухом идеально во всем диапазоне опираясь на данные об оборотах и открытия дроссельной заслонки. Это будет самый идеальный, но при этом дорогостоящий вариант.

Отсутствие впускного коллектора

Иногда впускной коллектор снимают, а вместо него устанавливают так называемые дудки, которые настроены под большие обороты. Это позволяет сильно поднять количество поступаемого в мотор воздуха, также уменьшает холостые обороты и улучшает стабильность работы при низких и средних оборотах. На высоких оборотах, конечно, все становится просто шикарно.

Это самое сложное в тюнинге впуска атмосферных моторов, но при этом это самый эффективный и дорогостоящий вариант. Также можно установить несколько дроссельных заслонок, тем самым улучшить отклик на педаль газа. К сожалению, в результате снижается ресурс вашего мотора, и достаточно сильно прирастает расход топлива.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания

Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря

Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

Общие схемы подключения двигателей с 380В на 220В через конденсатор

Чаще всего при необходимости решения такой задачи используют рабочий и пусковой конденсаторы (батареи конденсаторов). Базовые схемы подключения треугольником и звездой на 380В можно видеть на следующей иллюстрации:

Нефиксированная кнопка «Разгон» используется для активации параллельно подключенного пускового конденсатора. Ее необходимо удерживать до тех пор, пока двигатель не наберет максимальных оборотов. После этого пусковую цепь необходимо обязательно разъединить, чтобы предотвратить перегревание обмоток. Если мощность двигателя мала, пусковым конденсатором можно пренебречь, работая только через рабочий.

Расчет емкости конденсаторов ведется по следующим формулам:

Емкость пускового конденсатора при этом должна быть вдвое выше рабочей. Если не прибегать к расчету по формулам, то можно воспользоваться значением 7 мкФ/кВт.

Практическое применение показывает, что более эффективным является подключение треугольником, так как при этом распределение напряжения в обмотках будет более равномерным, да и мощность снижается меньше. Есть правда одно ограничение, которое касается компоновки клеммного блока двигателя. Если под его крышкой находится лишь три вывода на 380, то имеет место заранее предустановленная схема соединения, которую не изменишь. Если же там располагается шесть выводов, то можно выбирать, какой вариант организовать. Характерное обозначение наносится на металлическую табличку с характеристиками.

Если 380-вольтовый двигатель предполагается использовать на 220В в режиме с частыми пусками и остановками, то базовую схему можно доработать с организацией цепи динамического торможения:

Здесь можно видеть включение двигателя треугольником через емкостную цепь конденсаторов С1 (пускового) и С2 (рабочего). Дополнительно организована цепь на транзисторе и элементе сопротивления, которая подключается трехпозиционным ключом. Когда он находится в положении «3», напряжение сети 220В поступает на обмотки статора и кнопкой К1 можно совершить его запуск. Для остановки двигателя ключ переводится в положение «1», после чего на обмотки подается постоянный ток и осуществляется торможение. Следует отметить, что этот переключатель имеет только два фиксированных положения «2» и «3». Для использования обычного двухпозиционного ключа в эту цепь необходимо будет добавить еще один конденсатор. Выглядит это следующим образом:

Ранее уже упоминался тот факт, что однофазный ток приводит к организации разнонаправленных эквивалентных магнитных полей статора и ротора, которые можно сдвинуть (заставить вращаться) в ту или иную сторону. Следовательно, можно реализовать на практике схему реверсного подключения электродвигателя на 380В:

Схема является в некотором роде комбинацией двух предыдущих, только здесь использованы сдвоенный переключатель и пуск через реле Р1.

https://youtube.com/watch?v=tqwz6Uv7mlE

Рассмотренные в статье схемы являются базовыми, но в зависимости от конкретного случая их можно модифицировать как угодно, чтобы добиться включения в однофазную сеть 220В трехфазного асинхронного электродвигателя на 380В.

Регулятор асинхронного двигателя

Всем здравствуйте. В сети, да и в общем часто возникает вопрос, как выполнить регулятор скорости вращения вентилятора для асинхронного двигателя? Известно, что мы можем легко регулировать скорость двигателя, используя симистор с фазовым управлением. И также, в литературе содержится информация о том, что асинхронный двигатель вращается со скоростью от нескольких процентов до 20% ниже, чем синхронная скорость. Поэтому на вопрос о регулировании вращения асинхронного двигателя назревает ответ, инвертор. Однако это устройство является достаточно дорогостоящим, и смысл его выполнять собственными силами является спорным. Также считается, что использование фазового регулятора мощности с использованием симистора для этой цели невозможно. Однако это убеждение не совсем верно. Для некоторых двигателей и нагрузок использование симистора с фазовым управлением позволяет регулировать обороты в широком диапазоне.

Доступны интегральные микросхемы в таких простых фазовых регуляторах

Принимая во внимание ограничения, налагаемые системой фазового регулятора, мы можем очень просто создать нормально работающий регулятор скорости асинхронного двигателя. Давайте попробуем рассмотреть, что происходит после подключения асинхронного двигателя к типовому димеру, который обычно выполнен в соответствии с схемой, приведенной на рисунке

Рассмотрим случай (рисунок графика), когда симистор включается под углом = 100 после того, как напряжение сети проходит через ноль. Угол проводимости будет около 150 градусов, поэтому симистор отключится под углом около 250 градусов в точке B. Остаточное положительное напряжение останется на конденсаторе C1, поскольку он не полностью разряжается через симистор.

В этот момент в системе запуска появляется отрицательное напряжение, которое сначала заряжает остаточное напряжение до С1, а затем запускает триод под углом около 350. Второе включение симистора произойдет при очень низком напряжении, и угол проводимости будет намного меньше, чем при первом. В следующем периоде условия аналогичны, поэтому значительная асимметрия активации симистора в отрицательном и положительном полупериодах сохраняется. Такая асимметрия недопустима в схеме управления двигателем, она может быть даже опасна из-за насыщения магнитной системы.

Четыре стандартных диода, два резистора и потенциометр были добавлены в стандартную схему димера, которая показана на рисунке.

В первом полупериоде система ведет себя так же, как схема из предыдущего рисунка. Однако после появления отрицательного напряжения остаточное положительное напряжение на С1 разряжается через диод D4 и резистор R2. Диод D3 предотвращает дальнейшую зарядку с отрицательным напряжением C1, даже после того, как положительное напряжение было разряжено. Элементы D1, D2 и R1 выполняют аналогичную функцию в положительном полупериоде. В результате работы схемы симметризации после нескольких периодов асимметрия устраняется.

Элементы R5 и C2 сглаживают выбросы напряжения, возникающие после отключения симистора в точке B. Без них быстрое увеличение напряжения на выходе может привести к включению симистора. Резистор R4 увеличивает время запускающего импульса. Без него это время будет определяться емкостью С1 и внутренними сопротивлениями элементов С1, Т1 и Т2 и будет слишком коротким, чтобы правильно запустить симистор.

Ток на индуктивной нагрузке после включения симистора медленно увеличивается, при слишком коротком импульсе он может не достигнуть значения IL «защелкивающегося» тока, и симистор отключится после импульса затвора. IL для типовых симисторов составляет от нескольких до нескольких десятков миллиампер.

Схема может быть собрана на печатной плате, показанной на рисунке в тексте.

Стоить обратить внимание на тот факт, что во время работы присутствует полное напряжение сети. Так что не переусердствуйте с миниатюризацией устройства

Не исключено, что регулятор будет работать в условиях повышенной влажности и, возможно, даже химически агрессивных. Поэтому расстояние между дорожками должно быть на значительном расстоянии, что влечет за собой размер платы.

Назначение

Технически регулятор оборотов электродвигателя предназначен для изменения количества вращения вала за единицу времени. На этапе разгона корректировка частоты обеспечивает более плавную процедуру, меньшие токи и т.д. В некоторых технологических процессах необходимо регулятор оборотов снижает скорость движения оборудования, изменение подачи или нагнетания сырья и т.д.

Однако на практике данная опция может преследовать и другие цели:

  • Экономия затрат электроэнергии – позволяет снизить потери в моменты пуска и остановки вращений мотора, переключения скоростей или регулировки тяговых характеристик. Особенно актуально для часто запускаемых электродвигателей, использующих кратковременные режимы работы.
  • Контроль температурного режима, величины давления без установки обратной связи с рабочим элементом или с таковой в асинхронных электродвигателях.
  • Плавный пуск – предотвращает бросок тока в момент включения, особенно актуально для асинхронных моторов с большой нагрузкой на валу. Приводит к существенному сокращению токовых нагрузок на сеть и исключает ложные срабатывания защитной аппаратуры.
  • Поддержание оборотов трехфазных электродвигателей на требуемой отметке. Актуально для точных технологических операций, где из-за колебаний питающего напряжения может нарушиться качество производства или на валу возникает разное усилие.
  • Регулировка скорости оборотов электродвигателя от 0 до максимума или от другой базовой скорости.
  • Обеспечения достаточного момента на низких частотах вращения электрической машины.

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором – изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Немного теории об устройстве и области применения коллекторных электродвигателей

Электродвигатели этого типа могут быть постоянного или переменного тока, с последовательным, параллельным или смешанным возбуждением ( для переменного тока применяется только первые два вида возбуждения).

Коллекторный электродвигатель состоит из ротора, статора, коллектора и щеток. Ток в цепи, проходящий через соединенные определенным образом обмотки статора и ротора, создает магнитное поле, заставляющее последний вращаться. Напряжение на ротор передается при помощи щеток из мягкого электропроводного материала, чаще всего это графит или медно-графитовая смесь. Если изменить направление тока в роторе или статоре, вал начнет вращаться в другую сторону, причем это всегда делается с выводами ротора, что бы не происходило перемагничивание сердечников.

При одновременном изменении подключения и ротора и статора реверсирования не произойдет. Существуют также трехфазные коллекторные электродвигатели, но это уже совсем другая история.

Электродвигатели постоянного тока с параллельным возбуждением

Обмотка возбуждения (статорная) в двигателе с параллельным возбуждением состоит из большого количества витков тонкого провода и включена параллельно ротору, сопротивление обмотки которого намного меньше. Поэтому для уменьшения тока во время запуска электродвигателей мощностью более 1 Квт в цепь ротора включают пусковой реостат. Управление оборотами электродвигателя при такой схеме включения производится путем изменения тока только в цепи статора, т.к. способ понижения напряжения на клеммах очень не экономичен и требует применение регулятора большой мощности.

Электродвигатели постоянного тока с последовательным возбуждением

Обмотка возбуждения такого электродвигателя имеет небольшое число витков толстого провода, и при ее последовательном включении в цепь якоря ток во всей цепи будет одинаков. Электродвигатели этого типа более выносливы при перегрузках и поэтому наиболее часто встречаются в бытовых устройствах.

Эти однофазные моторы имеют меньший КПД, чем двигатели постоянного тока, но из за простоты изготовления и схем управления нашли наиболее широкое применение в бытовой технике и электроинструменте. Их можно назвать “универсальными”, т.к. они способны работать как при переменном, так и при постоянном токе. Это обусловлено тем, что при включении в сеть переменного напряжение направление магнитного поля и тока будет изменяться в статоре и роторе одновременно, не вызывая изменения направления вращения. Реверс таких устройств осуществляется переполюсовкой концов ротора.

Регулирование частотой

Специальные устройства, преобразователи частоты (другие названия инвертор, частотник, драйвер), подключаются к электрической машине. Путем выпрямления напряжения питания, преобразователь частоты внутри себя формирует необходимые величины частоты и напряжения, и подает их на электрический двигатель.

Необходимые параметры для управления АД преобразователь рассчитывает самостоятельно, согласно внутренним алгоритмам, запрограммированным производителем устройства.

Преимущества регулирование частотой.

  • Достигается плавное регулирование частоты вращения электромотора.
  • Изменение скорости и направление вращения двигателя.
  • Автоматическое поддержание требуемых параметров.
  • Экономичность системы управления.

Единственный недостаток, с которым можно смирится, это необходимость в приобретении частотника. Цены на такие устройства совсем незаоблачные, и в пределах 150 уе, можно обзавестись преобразователем для 2 кВт двигателя.

Самый простой способ

Во многих электроинструментах, в которых используются коллекторные двигатели, установлен небольшой реостат, с помощью которого можно практически без потери мощности управлять частотой вращения ротора. Такой элемент можно снять с неисправной дрели, шуруповёрта или перфоратора и установить последовательно с электрическим мотором. Если подходящего реостата нет в наличии, то такую деталь можно недорого приобрести в специализированном магазине.

Небольшая сложность заключается в том, что рабочий ход такого регулировочного механизма очень небольшой и бывает очень непросто установить обороты двигателя на необходимом уровне. Эта проблема, как правило, решается установкой дополнительных механических преобразователей механической энергии. Таким образом, можно будет правильно установить частоту вращения ротора, а также обеспечить фиксацию прибора на необходимом уровне.

Кроме реостатов из ручных электрических инструментов можно использовать готовые магазинные приборы, которые достаточно подключить в розетку, а выводы двигателя подсоединить уже непосредственно к регулировочному прибору. Такие изделия позволяют осуществлять изменение напряжения в очень широком диапазоне, поэтому подобрать положение управляющего тумблера под определённые обороты двигателя не составит большого труда. Немаловажным плюсом магазинных реостатов является возможность использовать их с другими электронными приборами, то есть достаточно один раз приобрести изделие, с помощью которого можно будет осуществлять регулировку большого количества приборов, не ограничиваясь электромоторами.

Частотное регулирование

Ещё совсем недавно (10 лет назад) частотных регуляторов скорости двигателей на рынке было ограниченное количество, и стоили они довольно дорого. Причина — не было дешёвых силовых высоковольтных транзисторов и модулей.

Но разработки в области твердотельной электроники позволили вывести на рынок силовые IGBT-модули. Как следствие — массовое появление на рынке инверторных кондиционеров, сварочных инверторов, преобразователей частоты.

На данный момент частотное преобразование — основной способ регулирования мощности, производительности, скорости всех устройств и механизмов приводом в которых является электродвигатель.

Однако, преобразователи частоты предназначены для управления трёхфазными электродвигателями.

Однофазные двигатели могут управляться:

  • специализированными однофазными ПЧ
  • трёхфазными ПЧ с исключением конденсатора

Преобразователи для однофазных двигателей

В настоящее время только один производитель заявляет о серийном выпуске специализированного ПЧ для конденсаторных двигателей — INVERTEK DRIVES.

Это модель Optidrive E2

Для стабильного запуска и работы двигателя используются специальные алгоритмы.

При этом регулировка частоты возможна и вверх, но в ограниченном диапазоне частот, этому мешает конденсатор установленный в цепи фазосдвигающей обмотки, так как его сопротивление напрямую зависит от частоты тока:

f — частота тока

С — ёмкость конденсатора

В выходном каскаде используется мостовая схема с четырьмя выходными IGBT транзисторами:

Optidrive E2 позволяет управлять двигателем без исключения из схемы конденсатора, то есть без изменения конструкции двигателя — в некоторых моделях это сделать довольно сложно.

Преимущества специализированного частотного преобразователя:

  • интеллектуальное управление двигателем
  • стабильно устойчивая работа двигателя
  • огромные возможности современных ПЧ:
  • возможность управлять работой двигателя для поддержания определённых характеристик (давления воды, расхода воздуха, скорости при изменяющейся нагрузке)
  • многочисленные защиты (двигателя и самого прибора)
  • входы для датчиков (цифровые и аналоговые)
  • различные выходы
  • коммуникационный интерфейс (для управления, мониторинга)
  • предустановленные скорости
  • ПИД-регулятор

Минусы использования однофазного ПЧ:

Использование ЧП для трёхфазных двигателей

Стандартный частотник имеет на выходе трёхфазное напряжение. При подключении к ему однофазного двигателя из него извлекают конденсатор и соединяют по приведённой ниже схеме:

Геометрическое расположение обмоток друг относительно друга в статоре асинхронного двигателя составляет 90°:

Фазовый сдвиг трёхфазного напряжения -120°, как следствие этого — магнитное поле будет не круговое , а пульсирующее и его уровень будет меньше чем при питании со сдвигом в 90°.

В некоторых конденсаторных двигателях дополнительная обмотка выполняется более тонким проводом и соответственно имеет более высокое сопротивление.

При работе без конденсатора это приведёт к:

  • более сильному нагреву обмотки (срок службы сокращается, возможны кз и межвитковые замыкания)
  • разному току в обмотках

Многие ПЧ имеют защиту от асимметрии токов в обмотках, при невозможности отключить эту функцию в приборе работа по данной схеме будет невозможна

Преимущества:

  • более низкая стоимость по сравнению со специализированными ПЧ
  • огромный выбор по мощности и производителям
  • более широкий диапазон регулирования частоты
  • все преимущества ПЧ (входы/выходы, интеллектуальные алгоритмы работы, коммуникационные интерфейсы)

Недостатки метода:

  • необходимость предварительного подбора ПЧ и двигателя для совместной работы
  • пульсирующий и пониженный момент
  • повышенный нагрев
  • отсутствие гарантии при выходе из строя, т.к. трёхфазные ПЧ не предназначены для работы с однофазными двигателями

Благодаря надежности и простоте конструкции асинхронные двигатели (АД) получили широкое распространение. В большинстве станков, промышленном и бытовом оборудовании применяются электродвигатели такого типа. Изменение скорости вращения АД производится механически (дополнительной нагрузкой на валу, балластом, передаточными механизмами, редукторами и т.д.) или электрическими способами. Электрическое регулирование более сложное, но и гораздо более удобное и универсальное.

Для многих агрегатов применяется именно электрическое управление. Оно обеспечивает точное и плавное регулирование пуска и работы двигателя. Электрическое управление производится за счет:

  • изменения частоты тока;
  • силы тока;
  • уровня напряжения.

В этой статье мы рассмотрим популярные способы, как может осуществляться регулировка оборотов асинхронного двигателя на 220 и 380В.

Устройство системы

Коллекторный тип двигателя состоит главным образом из ротора, статора, а также щёток и тахогенератора.

  1. Ротор — это часть вращения, статор — это внешний по типу магнит.
  2. Щётки, которые произведены из графита — это главная часть скользящего контакта, через которую на вращающийся якорь и стоит подавать напряжение.
  3. Тахогенератор —это устройство, которое производит слежку за характеристикой вращения прибора. Если происходит нарушение в размеренности процесса вращения, то он корректирует поступающий в двигатель уровень напряжения, тем самым делая его наиболее плавным и медленным.
  4. Статор. Такая деталь может включать в себя не один магнит, а, к примеру, две пары полюсов. Вместе с этим на месте статических магнитов здесь будут находиться катушки электромагнитов. Совершать работу такое устройство способно как от постоянного тока, так и от переменного.

Схема регулятора оборотов коллекторного двигателя

В виде регуляторов оборотов электродвигателей 220 В и 380 В применяются особые частотные преобразователи. Такие устройства относят к высокотехнологическим, они и помогают совершить кардинальное преобразование характеристики тока (форму сигнала, а также частоту). В их комплектации имеются мощные полупроводниковые транзисторы, а также широтно-импульсный модулятор. Весь процесс осуществления работы устройства происходит с помощью управления специальным блоком на микроконтроллере. Изменение скорости во вращении ротора двигателей происходит довольно медленно.

Именно по этой причине частотные преобразователи применяются в нагруженных устройствах. Чем медленнее будет происходить процесс разгона, тем меньшая нагрузка будет совершена на редуктор, а также конвейер. Во всех частотниках можно найти несколько степеней защиты: по нагрузке, току, напряжению и другим показателям.

Некоторые модели частотных преобразователей совершают питание от однофазового напряжения (оно будет доходить до 220 Вольт), создают из него трехфазовое. Это помогает совершить подключение асинхронного мотора в домашних условиях без применения особо сложных схем и конструкций. При этом потребитель сможет не потерять мощность во время работы с таким прибором.

Зачем используют такой прибор-регулятор

Если говорить про двигатели регуляторов, то обороты нужны:

  1. Для существенной экономии электроэнергии. Так, не любому механизму нужно много энергии для выполнения работы вращения мотора, в некоторых случаях можно уменьшить вращение на 20−30 процентов, что поможет значительно сократить расходы на электроэнергию сразу в несколько раз.
  2. Для защиты всех механизмов, а также электронных типов цепей. При помощи преобразовательной частоты можно осуществлять определённый контроль за общей температурой, давлением, а также другими показателями прибора. В случае когда двигатель работает в виде определённого насоса, то в ёмкости, в которую совершается накачка воздуха либо жидкости, стоит вводить определённый датчик давления. Во время достижения максимальной отметки мотор попросту автоматически закончит свою работу.
  3. Для процесса плавного запуска. Нет особой необходимости применять дополнительные электронные виды оборудования — все можно осуществить при помощи изменения в настройках частотного преобразователя.
  4. Для снижения уровня расходов на обслуживание устройств. С помощью таких регуляторов оборотов в двигателях 220 В можно значительно уменьшить возможность выхода из строя приборов, а также отдельных типов механизмов.

Схемы, по которым происходит создание частотных преобразователей в электродвигателе, широко используются в большинстве бытовых устройств. Такую систему можно найти в источниках беспроводного питания, сварочных аппаратах, зарядках телефона, блоках питания персонального компьютера и ноутбука, стабилизаторах напряжения, блоках розжига ламп для подсветки современных мониторов, а также ЖК-телевизоров.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: