Подключение электродвигателя на 380 вольт. схемы подключения

Устройство и конструкция


Конструктивно двухскоростные электродвигатели отличаются от стандартных, особой конструкцией статора, ротор – обычный короткозамкнутый. Наиболее распространённые типы конструкции двухобмоточных электродвигателей:

  • с двумя зависимыми обмотками;
  • с двумя независимыми обмотками.

Устройство двухскоростных электродвигателей с двумя зависимыми обмотками может отличаться исходя из соотношения числа полюсов – 1:2, 3:2, 4:3. При соотношении частоты вращения 1:2, используется одна полюснопереключаемая обмотка статора по схеме Даландера. При соотношениях 3:2, 4:3 – одна полюснопереключаемая обмотка по методу амплитудно-фазной модуляции.

При использовании зависимых обмоток 2-х скоростные электродвигатели производятся в стандартных габаритах, независимые – имеют незначительно большие размеры.

Стоит обратить внимание, двухскоростной электродвигатель АИР на каждой частоте вращения будет выдавать разную мощность. В тоже при использовании частотных преобразователей, мощность остается не изменой

Большинство общепромышленных приводов, согласно руководству по эксплуатации, не предусматривают работу с частотными преобразователями. Преобразователи частоты могут уменьшить паспортный ресурс в разы или вывести оборудование из строя

Схемы подключения

Схемы подключения асинхронных двухскоростных электродвигателей зависят от соотношения числа оборотов:

  • 500/1000, 750/1500, 1500/3000 об/мин – треугольник-двойная звезда (Δ/YY)
  • 500/750, 1000/1500, 750/1000 об/мин — тройная звезда — тройная звезда (YYY/YYY)

На чертежах показано устройство схемы обмотки двухобмоточных электродвигателей и принцип подключения двигателя на 2 скорости.

Теоретическая часть схемы подключения двухскоростного двигателя изложена мною на Дзене пару дней назад.

В этой статье выкладываю фото и схемы практического включения двухскоростного электродвигателя.

Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.

Тут по китайски написано: «Две звезды» и «Треугольник»:

Как реализована защита двигателя: отдельная защита на каждую скорость, т.к. номинальные токи двигателя разные:

Коротко о схеме включения двигателя Даландера. Двигатель включается через реле времени с задержкой отключения.

Реле времени 215А2 включается сразу, а отключается через 5 секунд. Это нужно, чтобы двигатель и контакторы не дергать по пустякам, и кратковременные остановки гидравлических перемещений не отключали двигатель гидростанции.

Далее реле 261К0 включает режим работы треугольник, реле 261К1 – звёзды.

11-15. Схема включения двухскоростного асинхронного двигателя

На рис. 11-22 показана схема управления пуском, двухскоростного асинхронного двигателя. Для получения меньшей скорости, когда число полюсов удвоено, нажимают кнопку Пуск М и обмотки статора присоединяются к сети зажимами , т. е. в треугольник. При этом включении обмотка статора создает большее число полюсов. Большая скорость получается при нажатии кнопки Пуск Б, когда включаются контакторы 1Б и 2Б и обмотки статора соединяются при параллельном соединении секций двойной звездой. При этом включении обмотка статора создает меньшее число полюсов. Переключение на большую скорость можно производить без предварительного нажатия кнопки Стоп, т. е. на ходу.

Рис. 11-22. Схема пуска двухскоростного асинхронного двигателя.

Перейти на главную страницу справочника.

Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Δ/YY.

Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y/YY.

Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Δ/YY и Y/YY.

Как подключить асинхронный двигатель

Специалист перед подключением электродвигателя всегда поглядит на его шильдик и ознакомится со схемой подключения обмоток электродвигателя.

Шильдик асинхронного электродвигателя выглядит примерно воттак:

По информации на шильдике мы делаем вывод, что если у наснапряжение 380 вольт, то подключаем электродвигатель по схеме треугольник. Еслиу нас 660 вольт, то по схеме звезда.

Так же бывают двигатели на 220/380 вольт:

По шильдику видно, что если у нас напряжение в сети 220 вольт, то подключаем треугольником. Следовательно, если 380 вольт, то звездой.

Теперь Вы уже хотя бы понимаете, как подключить асинхронный двигатель, ориентируясь на шильдик.

Заточной станок (точило) на двигателе Даландера

Недавно попался заточной станок с двухскоростным двигателем, выкладываю его схему.

Схема заточного станка на двухскоростном двигателе Даландера

Меня часто спрашивают, какую защиту сделать этому двигателю? Вот, на схеме – простое тепловое реле (РТ1), настроенное на бОльший ток (около 11 А).

Вот шильдик двигателя:

Параметры двухскоростного двигателя заточного станка

А вот – его обозначения выводов:

Выводы двухскоростного двигателя

Как думаете, почему вместо схемы подключения показан прямоугольничек ПС (переключатель скоростей)? Правильно, схема тогда была бы в 2 раза больше и сложнее.

19.4 Запуск двухскоростного двигателя с переключаемыми полюсами (рисунок 19.4)

Электрические характеристики элементов контроля и защиты будут такими же, как в предыдущем примере в том случае, когда принимается в расчет наличие двух номинальных мощностей двигателя в зависимости от его скорости работы.

Цепи на рисунке 19.4 являются наиболее используемыми, хотя не единственными для запуска двигателя с переключаемыми полюсами в обоих направлениях движения и на любой из двух своих скоростей.

Между двумя контакторами каждого инвертора К1 – К2 и К3 – К4 размещаются двойные защитные шторки, одна с защитными контактами собственных контакторов (К1, К2, К3 и К4; 21–22) и другая с контактами собственных кнопок движения (S1, S2, S3 и S4; 21–22). Последние могли бы быть защищены защитными механическими шторками между каждой парой контакторов: К1 – К2 и К3 – К4, избегая в этом случае прерывателей движения тройного контакта S3 и S4. Кроме того имеются защитные шторки между контакторами применяемыми для маленькой скорости К1 и К2, а остальные К3, К4 и К5 применяемые для большой скорости, выполненные посредством вспомогательных контактов собственных контакторов (К1, К2, К3 и К4; 31–32) и (К5; 21–22).

Перейдем к краткому описанию работы цепи при каждой из четырех возможностей движения, но пренебрегая действием контактов защитных шторок, исходя из того, что предыдущее их описание является достаточным для понимания действия их работы.

  • а) Запуск и остановка на маленькой скорости при движении вправо.
  • Запуск путем нажатия на S1.
  • Замыкание контактора цепи К1 и запуск двигателя на маленькой скорости движения вправо, при треугольном соединении.
  • Автопитание через (К1; 13–14).
  • Остановка путем нажатия на S0.
  • б) Запуск и остановка на маленькой скорости при движении влево.
  • Запуск путем нажатия на S2.
  • Замыкание контактора цепи К2 и запуск двигателя на маленькой скорости движения влево, при треугольном соединении.
  • Автопитание через (К2; 13–14).
  • Остановка путем нажатия на S0.
  • в) Запуск и остановка на большой скорости при движении вправо.
  • Запуск путем нажатия на (S3; 13–14 и 23–24).
  • Замыкание контактора звезды К5, который формирует звезду двигателя при коротком замыкании U1, V1 и W1.
  • Замыкание контактора цепи К3 через (К5; 23–24), таким образом, что двигатель начинает работу на большой скорости при движении вправо, соединение двойная звезда.
  • Автопитание через (К5; 13–14) и (К3; 13-14).
  • Остановка путем нажатия на S0.
  • г) Запуск и остановка на большой скорости при движении влево.
  • Запуск путем нажатия на (S4;13–14 и 23–24).
  • Замыкание контактора звезды К5, который формирует звезду двигателя при коротком замыкании U1, V1 и W1.
  • Замыкание контактора цепи К4 через (К5; 23–24), таким образом, что двигатель начинает работу на большой скорости при движении влево, соединение двойная звезда.
  • Автопитание через (К5; 13–14) и (К3; 13–14).
  • Остановка путем нажатия на S0.

В случае, если при перегрузке двигателя, выйдет из строя термическое реле F3 или F4, эффект будет таким же, как при нажатии на S0, каким бы ни был открывшийся контакт, цепь контроля прервется.

Рисунок 19.4 – Цепи мощности и контроля для запуска двигателя с переключаемыми полюсами (подключение Даландера), с переключением вращения

(495) 646-75-71, (495) 646-71-95Россия 8-800-511-75-71 (бесплатно) [email protected]

  • Электродвигатели АИР — характеристики и размеры
  • Электродвигатели АМН (5АН, 5АМН, 4АМНУ) — технические характеристики.
  • Электродвигатели взрывозащищенные АИМЛ, ВА (АИМ, 4ВР)
  • Электродвигатели 4А, 4АМ — характеристики, размеры, отличие
  • Электродвигатели с удлиненным валом (для моноблочных насосов)
  • Электродвигатели АИС (RA, 6А, 6АМ) по стандартам CENELEC, DIN
  • Электродвигатели с повышенным скольжением АИРС
  • Двухскоростные электродвигатели АИС
  • Однофазные электродвигатели АИРЕ, 220В
  • Электродвигатели для привода осевых вентиляторов АИРП

Схемы соединений и подключения двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин.

Схема соединений двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз О”/YY.

Схема соединений двухскоростных обмоток. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз Y/YY.

Схема подключения двухскоростного электродвигателя к сети. 2p=2/4, 3000/1500 об/мин., а=1/2, соединение фаз О”/YY и Y/YY.

Двухскоростные обмотки. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-О”/YY.

Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-О”/YY.

Что важно знать о схемах подключения трехфазного электродвигателя на 220 вольт

Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-О”/YY.

Двухскоростные обмотки. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-О”/YY.

Схема соединений двухскоростных обмоток. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-О”/YY.

Схема подключения двухскоростного электродвигателя к сети. 2p=4/2, 1500/3000 об/мин., а=1/2, соединение фаз Y-О”/YY.

Перейти на главную страницу справочника.

Проблемы подключений двигателей с двумя вариантами напряжений

В различных станках, механизмах и технологических установках применяются электроприводы с двухскоростными асинхронными электродвигателями, у которых ступенчатое регулирование скорости достигается за счёт изменения числа пар полюсов путём изменения схемы включения специально выполненной статорной обмотки.

На рисунке приведена схема нереверсивного электропривода двухскоростным асинхронным двигателем. В схеме предусмотрено переключение статорной обмотки с треугольника на двойную звезду (О”/YY). Такая схема применяется в электроприводах механизмов, если по технологии требуется регулирование скорости с постоянной мощностью на рабочем органе.

Направляющие команды в схему подаются трёхпозиционным командоконтроллером SM. В исходном положении, когда включены автоматы QF1 и QF2 и командоконтроллер находится в нулевом (левом) положении, срабатывает реле напряжения KV и своим контактом KV становится на самопитание.

При переключении командоконтроллера в первое положение (НС) получает питание катушка контактора КМ1(НС), контактор срабатывает, замыкает свой контакт 3-6 в цепи катушки тормозного контактора КМТ и подключает статорную обмотку, включённую в треугольник (О”), к сети. В тоже время тормозной контактор КМТ срабатывает и подаёт питание на электромагнит тормоза, тормоз растормаживается (поднимаются колодки), и электродвигатель пускается на низкую скорость (число пар полюсов 2р).

Схема включения двухскоростного асинхронного двигателя

Чтобы остановить электропривод необходимо переключить командоконтроллер в нулевое положение. В этом случае контакторы теряют питание, статорная обмотка отключается от сети и контакты КМТ оказываются разомкнутыми. Контактор КМТ снимает питание с катушки электромагнитного тормоза, и тормозные колодки накладываются на тормозной барабан. Электропривод останавливается под действием момента сопротивления Мс и момента Ммт механического тормоза.

Капитальный ремонт токарного станка в процессе. Главный двигатель – двухскоростной

Как подключить розетку на 380 вольт: виды розеток и особенности монтажа

В те времена, когда преобразователи частоты для асинхронных двигателей были роскошью (более 20 лет назад), в промышленном оборудовании в случае необходимости применялись двигатели постоянного тока, в которых имелась возможность регулировать частоту оборотов.

Способ этот был громоздкий, и наряду с ним использовался ещё один, попроще – применялись двускоростные (многоскоростные) двигатели, в которых обмотки подключаются и переключаются определённым образом по схеме Даландера, что позволяет изменять скорость вращения.

Двигатели постоянного тока с изменением скорости и управлением от электронного блока используются в дорогостоящем промышленном оборудовании.

А вот двухскоростные двигатели встречаются в станках производства СССР 1980-х годов средней ценовой категории. И по подключению лично у меня возникали проблемы, в связи с путаницей и недостатком информации.

Последние примеры – токарный станок спец. исполнения, лесопилка. Подробности будут ниже.

Исполнение обмоток напоминает соединение “треугольником”, в связи с этим переключение может быть ассоциировано со “звездой-треугольником”. И это сбивает с толку.

Существуют двигатели не только с двумя, но и с бОльшим количеством скоростей. Но я буду говорить о том, что лично подключал и держал в руках:

Двухскоростной асинхронный электродвигатель Даландера

Поменьше теории, побольше практики. И как обычно, от простого к сложному.

Двухскоростные электродвигатели – особенности конструкции

Несмотря на появление на рынке электротехники более современных двигателей с частотными преобразователями, двухскоростные агрегаты широко используются даже на самом современном оборудовании. Это объясняется рядом причин:

  • Простота и надежность конструкции.
  • Возможность развивать разную мощность на разных скоростях благодаря наличию двух пар обмоток на одном роторе, что позволяет получить две скорости вращения и две пары полюсов.

Двигатели с частотным преобразователем могут выдавать только постоянную мощность, соответственно, это несколько снижает сферу их использования.

Принцип действия и схема запуска

Принцип работы:

  1. Электрическим током порождается пульсирующее магнитное поле на статоре мотора. Это поле можно рассматривать как 2 разных поля, которые вращаются разнонаправлено и имеют равные амплитуды и частоты.
  2. Когда ротор находится в неподвижном состоянии, эти поля приводят к появлению равных по модулю, но разнонаправленных моментов.
  3. Если у двигателя отсутствуют специальные пусковые механизмы, то при старте результирующий момент будет равен нулю, а значит – двигатель не будет вращаться.
  4. Если же ротор приведен во вращение в какую-то сторону, то соответствующий момент начинает преобладать, а значит, вал двигателя продолжит вращаться в заданном направлении.

Схема запуска:

Запуск производится магнитным полем, которое вращает подвижную часть мотора. Оно создается 2 обмотками: главной и дополнительной. Последняя имеет меньший размер и является пусковой. Она подключается к основной электрической сети через ёмкость или индуктивность. Подключение осуществляется только на время пуска. В моторах с низкой мощностью, пусковая фаза замкнута накоротко.

Пуск двигателя осуществляют удержанием пусковой кнопки на несколько секунд, вследствие чего происходит разгон ротора.

Во время отпускания пусковой кнопки, электромотор из двухфазного режима переходит в однофазный, и его работа поддерживается соответствующей компонентой переменного магнитного поля.

Пусковая фаза рассчитана на кратковременную работу– как правило, до 3 с. Более длительное время нахождения под нагрузкой, может привести к перегреву, возгоранию изоляции и поломке механизма

Поэтому, важно своевременно отпустить пусковую кнопку.

С целью повышения надежности в корпус однофазных двигателей встраивают центробежный выключатель и тепловое реле.

Функция центробежного выключателя состоит в отключении пусковой фазы, когда ротор набирает номинальную скорость. Это происходит автоматически – без вмешательства пользователя.

Тепловое реле отключает обе фазы обмотки, если они нагреваются выше допустимого.

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе
создаётся магнитный поток, который изменяется с частотой подаваемого
напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как
во времени, так и в пространстве. Результирующий магнитный поток оказывается
при этом вращающимся.

Результирующий магнитный поток статора вращается и тем
самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую
электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя
с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся
повернуть ротор в направлении вращения магнитного поля статора. Когда он
достигает значения, тормозного момента ротора, а затем превышает его, ротор
начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает,
насколько синхронная частота n1 магнитного поля статора больше, чем частота
вращения ротора n2, в процентном соотношении.

Скольжение это крайне важная величина. В начальный
момент времени она равна единице, но по мере возрастания частоты вращения n2
ротора относительная разность частот n1-n2 становится меньше, вследствие чего
уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение
вращающего момента. В режиме холостого хода, когда двигатель работает без
нагрузки на валу, скольжение минимально, но с увеличением статического момента,
оно возрастает до величины sкр — критического скольжения. Если двигатель
превысит это значение, то может произойти так называемое опрокидывание
двигателя, и привести в последствии к его нестабильной работе. Значения
скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения
оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным
моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой
на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя
заключается во взаимодействии вращающегося магнитного поля статора и токов,
которые наводятся этим магнитным полем в роторе. Причём вращающий момент может
возникнуть только в том случае, если существует разность частот вращения
магнитных полей.

Практическая реализация

На практике мне попадались только схемы на переключателях ПКП-25-2. Это универсальное чудо советской коммутации, у которого может быть миллион возможных сочетаний контактов. Внутри есть кулачок (их тоже несколько вариантов по форме), который можно переставлять.

Это реальная головоломка и ребус, требующий высокой концентрации сознания. Хорошо, что каждый контакт просматривается в небольшую щёлку, и можно посмотреть, когда он замкнут или разомкнут. Кроме того, через эти прорези в корпусе можно чистить контакты.

Количество положений может быть несколько, их количество ограничивается упорами, показанными на фото:

Переключатель пакетный ПКП-25-2

Переключатель ПКП 25. Головоломка на любителя.

Переключатель пакетный ПКП-25-2 — контакты

История появления

История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.

В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.

Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.

В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.

Технические характеристики

Установка и последующая работа электродвигателя АИР обязательно отстраивается от механической нагрузки подключаемой на его вал, условий подключения и эксплуатации. Технические характеристики электрической машины выбираются в соответствии с вышеперечисленными параметрами. Характеристики двигателя также указаны в паспорте или на шильде.

К основным техническим данным относятся:

  • Мощность – определяет количество перерабатываемой электроэнергии, для электродвигателей АИР этот параметр находится в пределах от 0,12 до 315кВт.
  • Питающее напряжение – в определенной степени зависит от схемы соединения обмоток. Электродвигатели АИР могут соединятся как звездой, так и треугольником, поэтому напряжение указывается для обоих способов – 220/380 или 380/660В.
  • Скорость вращения – это число оборотов за единицу времени, для марки АИР может находиться в пределах от 750об/мин до 3000об/мин.
  • КПД – определяет соотношение между израсходованной энергией и произведенной работой.
  • Допустимый температурный режим – как правило, составляет от – 40 до + 45ºС.
  • Вид монтажа – всего существует три способа для электродвигателя АИР: IM1081 – на станину (горизонтально), IM2081 и на станину, и на фланец (и горизонтально, и вертикально), IM3081 только на фланец (вертикально). Пример вариантов основного исполнения приведен на рисунке ниже:


Рис. 3. Способ монтажа электродвигателя АИР

  • Электрические и магнитные потери – определяются напряжением холостого хода и током КЗ.
  • Геометрические размеры – указывают основные габариты и расстояния от элементов электрической машины до ближайших деталей, вместе с которыми двигатели применяются.
  • Степень пыле- влагозащищенности – обозначается двумя латинскими буквами IP и парой цифр, одна из которых определяет устойчивость к пыли, а вторая к влаге.

Общепромышленное назначение некоторых из них предусматривают технические особенности, которые указываются соответствующими буквами, с которыми двигатели выпускаются:

  • Б – обеспечивает работу в условиях высокой температуры;
  • В – встраиваемые электрические машины;
  • С – с увеличенным параметром скольжения;
  • Е – с функцией принудительного торможения ротора.
  • Е2 – с ручным управлением торможением.
  • ЗЕ – трехфазное устройство для подключения в однофазную сеть.
  • Ж – для насосных установок.
  • РЗ – в моторно-редукторных приспособлениях.
  • Ш – общепромышленные электродвигатели швейной отрасли.
  • П – с монтажной характеристикой высокой точности.
  • Ф – маслоустойчивого исполнения.
  • А – используемые на атомных электростанциях.
  • Х2 – повышенной химической устойчивости.

19.1 Двухскоростные асинхронные двигатели различных скоростей

Асинхронные трехфазные двигатели могут быть сконструированы более, чем на одну скорость, либо реализованные с различными обмотками, отличающимися числом полюсов, либо только с одной обмоткой, но построенной таким образом, что может подключаться внешне с различным числом полюсов. По этой причине некоторые виды трехфазных асинхронных двигателей с различными скоростями называют также двигатели с переключаемыми полюсами.

На рисунке 19.1 схематически представлены разнообразные типы обмоток и также их подключение, которые в настоящее время наиболее часто употребляются в конструкции двигателей различных скоростей, причем второй является наиболее часто используемым из всех.

Рисунок 19.1 – Системы соединения трехфазных асинхронных двигателей с различными скоростями

Этот тип двигателей имеет короткозамкнутый ротор и в основном применяется в работе станков и вентиляторов, и, что касается видов конструкции, представленных на рисунке 19.1, их главными характеристиками являются следующие:

  1. Двигатели с двумя независимыми обмотками. У этих двигателей две скорости и они сконструированы таким образом, что каждая обмотка взаимодействует внутренне с различным количеством полюсов и в зависимости от того, какая обмотка подключена к сети, двигатель будет вращаться с различным числом оборотов. В этом типе двигателей обычно обе обмотки включаются соединением в звезду и наиболее частые сочетания полюсов это: 6/2, 6/4, 8/2, 8/6, 12/2 и 12/4.
  2. Двигатели с одной обмоткой с подключением Даландера. Эти двухскоростные двигатели сконструированы с обычной трехфазной обмоткой, но соединенной внутри таким образом, что в зависимости то того, какие внешние потребители подключены в сеть, в двигателе будут происходить переключения с одного на другое количество полюсов, но их соотношение всегда будет 2 к 1; таким образом, у двигателя будут две роторные скорости, одна в два раза превышающая другую. Как показано на рисунке 19.1, подключение обмоток осуществляется треугольником или звездой для меньшей скорости и двойной звездой для большей, наиболее частые сочетания полюсов это: 4/2, 8/4 и 12/6.
  3. Двигатели с обмоткой Даландера и другой независимой обмоткой. При помощи этого типа двигателя достигаются три различные скорости, две с обмоткой подключения Даландера и третья с независимой обмоткой, конструкция которой различное количество полюсов, отличное от двух полярностей, полученных с первой. Наиболее часто используемые подключения представлены на рисунке 19.1, и наиболее часто встречающиеся сочетания полюсов: 6/4/2, 8/4/2, 8/6/4, 12/4/2, 12/6/4, 12/8/4, 16/12/8 и 16/8/4.
  4. Двигатели с двумя обмотками Даланлера. При помощи двигателей этого типа добиваются четырех скоростей, две с каждой обмотки, которые будут предназначены для полярностей отличных друг от друга, при наиболее часто использующихся сочетаниях: 12/8/6/4 и 12/6/4/2.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector