Норма коэффициента абсорбции трансформатора и как его измерить

Норматив для изоляции

Значение коэффициента является показателем ресурса изоляционного материала. Это испытание занимает сравнительно много времени, позволяет определить характеристики тока, замедленного поляризацией. Различие показателей для сухой и влажной изоляции обусловлено различной продолжительностью заряда емкости материала.

Нормальная изоляция

Среднее нормативное значение абсорбционного коэффициента 1,3.

К 1,6 – изоляция очень хорошая

Если трансформатор новый, рассчитанный или измеренный показатель не должен быть ниже определенного производителем более чем на 20%. Если это условие не выполнено, оборудование требует сушки.

Сухая

Норма для неувлажненной обмотки K = 1,3-2,0. Ток в начале испытания резко повышается, потом снижается. Значение через 60 секунд отличается от показателя через 15 секунд примерно на 30% в сторону повышения.

Влажная

Если изоляция влажная, коэффициент имеет показатель, близкий к единице. Ток быстро устанавливается, в течение 45-и секунд меняется мало.

Значения электросопротивления для всех видов трансформаторов определены в ПУЭ (правилах устройства электроустановок):

  1. Для трансформаторов с мощностью до 35 кВ – 450-40 МОм (в зависимости от температуры).
  2. Для сухих преобразователей от:
  • 100Мом при напряжении обмоток 1 кВ;
  • 300 Мом при напряжении обмоток 1-6 кВ;
  • от 500 МОм – от 6 кВ.

ГОСТ 3484.3-88(CT СЭВ 5266-85)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Методы измерений диэлектрических параметров изоляции

Power transformers.Measuring methods of dielectric parameters of insulation

Дата введения 1990-01-01

1. РАЗРАБОТАН И ВНЕСЕН Министерством электротехнической промышленности СССР

ИСПОЛНИТЕЛИ

В.В.Боднар, канд. техн. наук (руководитель темы); А.А.Долженко, канд. техн. наук; С.Т.Сапин

2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 30.08.88 N 3051

3. Срок проверки – 1994 г., периодичность проверки – 5 лет

4. Стандарт полностью соответствует СТ СЭВ 5266-85

5. ВЗАМЕН ГОСТ 3484-77 в части разд.8

6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта, раздела

Вводная часть; 1.8

Настоящий стандарт распространяется на силовые трансформаторы общего назначения по ГОСТ 11677-85 и устанавливает методы измерений сопротивления изоляции обмоток, тангенса угла диэлектрических потерь и емкости обмоток.

Методы измерений, установленные настоящим стандартом, применяют для специальных и регулировочных трансформаторов при измерениях диэлектрических параметров изоляции, если это предусмотрено стандартами или техническими условиями на эти трансформаторы.

1.ЗАЧЕМ ПРОВЕРЯЮТ СОСТОЯНИЕ ИЗОЛЯЦИИ?

Любой электрический кабель состоит из металлических токоведущих жил, изолированных друг от друга и защищенных одной или несколькими оболочками от воздействия окружающей среды. Состояние диэлектрической оболочки кабеля или электропроводки непосредственно влияет на безопасность персонала, обслуживающего электроустановки. Нарушение изоляции, вследствие механических воздействий (при монтаже проводки, укладке кабеля или в процессе проведения земляных работ), условий окружающей среды (воздействие повышенной температуры и влажности), условий эксплуатации (некачественные соединения, превышение расчетных параметров) или естественного старения, несет в себе риск возникновения аварийных ситуаций. Последствия от пробоя изоляции представляют опасность поражением электрическим током, возможным пожаром, повреждением электрооборудования и имущества.

Для потребителя замена поврежденного силового кабеля или скрытой электропроводки здания – это очень трудоемкое и затратное мероприятие. Кроме того, при аварийном отключении электрической энергии невозможно точно подсчитать убытки от простоя оборудования, брака (для производства с непрерывным циклом), утраты компьютерных данных (например, при выходе из строя сервера) и потери репутации (например, для банка). Для некоторых категорий потребителей (больницы, транспорт, связь, военные объекты) ситуация с отключением электричества является недопустимой.

Для генерирующих организаций и поставщиков электрической энергии также необходимо постоянно контролировать состояние изоляции электрооборудования и распределительных сетей. Частые аварии или повышенный ток утечки кабельных линий грозят материальными убытками и влекут за собой финансовые санкции и штрафы со стороны потребителей электроэнергии.

Давно известно, что легче предотвратить проблему, чем потом преодолевать последствия от ее возникновения. Оказывается, состояние изоляции можно оценить, измеряя всего несколько параметров: сопротивление изоляции постоянному току RISO, коэффициенты абсорбции DAR

, поляризацииPI и диэлектрического разрядаDD . Значения этих величин позволяют обнаружить расслоение и загрязнение, определить ток утечки, степень влажности и старения, т.е. сделать вывод о пригодности кабеля или электропроводки к дальнейшей эксплуатации. Проведение регулярных проверок и измерения состояния изоляции поможет предотвратить непредвиденные нарушения в электроснабжении. После проведения ремонтных работ или при вводе нового объекта электроснабжения, проводятся внеплановые измерения сопротивления изоляции.

Рис.1. Измеритель параметров электроизоляции MIC-5010 и набор аксессуаров из стандартной комплектации.

Компания Sonel S.A. разработала и производит, хорошо зарекомендовавшие себя измерители сопротивления изоляции серии MIC (портативные МIC-10 и МIC-30; с улучшенной эргономикой MIC-2505, MIC-2510; и профессиональные МIC-5000, МIC-5005 и MIC-5010), которые позволяют выполнить все необходимые измерения. Новые модели MIC-10k1 и MIC-5050 имеют графический дисплей, повышенный диапазон испытательного напряжения (10 кВ и 5 кВ соответственно), интерфейсы Bluetooth и USB, а также возможность проведения измерений в условиях сильных электромагнитных помех (например, на высоковольтных трансформаторных подстанциях).

В стандартной комплектации измерителей серии MIC присутствует необходимый набор измерительных зондов, проводов и зажимов типа «крокодил», а также удобная сумка для переноски. В отличие от имеющихся на рынке приборов даже известных брендов, в измерителях SONEL все аксессуары (рис.1): измерительные провода с гарантированной стойкостью по напряжению до 11 кВ, а также зонды и измерительные зажимы типа «крокодил» имеют специальные безопасные разъемы и отвечают самым строгим требованиям европейского стандарта EN 61010-031.

Основы технологии абсорбционных процессов

Схема абсорбционно-десорбционного цикла: 1 – абсорбер; 2 – десорбер; 3 – очищаемый газ; 4 – очищенный газ; 5 – регенерированный абсорбент; 6 – отработанный абсорбен…

В пром-сти про­цесс А. осу­ще­ст­в­ля­ют обыч­но в вер­ти­каль­ных ко­лон­ных ап­па­ра­тах – аб­сор­бе­рах, имею­щих раз­ви­тую по­верх­ность со­при­кос­но­ве­ния га­за и жид­ко­сти. Наи­бо­лее рас­про­стра­не­ны на­са­доч­ные ап­па­ра­ты (ус­тар. – скруб­бе­ры), за­пол­нен­ные слоя­ми твёр­дых тел разл. раз­ме­ров и фор­мы – на­сад­ка­ми для соз­да­ния раз­ви­той по­верх­но­сти кон­так­та фаз, и та­рель­ча­тые ап­па­ра­ты, снаб­жён­ные рас­по­ло­жен­ны­ми од­на над дру­гой по­пе­реч­ны­ми пе­ре­город­ка­ми разл. кон­ст­рук­ции, или та­рел­ка­ми, с по­мо­щью ко­то­рых по вы­со­те ко­лон­ны осу­ще­ст­в­ля­ет­ся мно­го­крат­ный дис­крет­ный кон­такт га­за (па­ра) с жид­ко­стью. Про­цесс час­то осу­ще­ст­в­ля­ют по аб­сорб­ци­он­но-де­сорб­ци­он­но­му цик­лу (см. рис.), од­на­ко ста­дия де­сорб­ции мо­жет от­сут­ст­во­вать, ес­ли в ре­зуль­та­те А. по­лу­ча­ют го­то­вый про­дукт или ре­ге­не­ра­ция по­гло­ти­те­ля не­це­ле­со­об­раз­на (не­воз­мож­на). Ре­ге­не­ра­цию аб­сор­бен­та (де­сорб­цию га­зов) мож­но про­во­дить сни­же­ни­ем дав­ле­ния, на­гре­ва­ни­ем, от­дув­кой пло­хо рас­тво­ри­мы­ми га­за­ми и па­ра­ми ки­пя­ще­го аб­сор­бен­та.

Фи­зич. А., как пра­ви­ло, наи­бо­лее эф­фек­тив­на при гру­бой очи­ст­ке от боль­ших ко­ли­честв га­за под дав­ле­ни­ем. Хи­мич. А. ча­ще все­го при­ме­ня­ют при из­вле­че­нии ма­лых ко­ли­честв при­ме­сей и при тон­кой очи­ст­ке; при этом обыч­но су­ще­ст­вен­но вы­ше се­лек­тив­ность аб­сор­бен­та, ни­же ко­ли­че­ст­во цир­ку­ли­рую­ще­го рас­тво­ра вслед­ст­вие боль­шой по­гло­ти­тель­ной спо­соб­но­сти.

Измерение сопротивления постоянному току

  • для статоров напряжением выше 3 кВ;
  • для роторов таких же аппаратов.

Для обмоток статоров значения, полученные для каждой фазы, не должны отличаться более, чем на ±2%. Во всех описанных случаях величины сопротивлений не должны различаться от измеренных ранее более, чем на ту же величину.

Для измерений используются микроомметры, рассчитанные на точное измерение малых величин сопротивления. Для исключения влияния сопротивления соединительных проводов и контактов в месте подключения используется мостовая (четырехпроводная) схема подключения прибора.

Для меди формула выглядит так:

R2 = R1 (235 + t2)/(235 + t1).

Сопротивление R1 – измеренное при температуре t1. Сопротивление R2 – значение, приведенное к температуре t2.

Для алюминия меняется только числовой коэффициент:

R2 = R1 (245 + t2)/(245 + t1).

На основании измерений делается заключение о наличии витковых замыканий в проверяемой обмотке. При выявлении его наличия потребуется определить место замыкания и заменить поврежденный участок.

Источник

Характеристика и виды силикагеля

Указанный абсорбирующий состав выполнен в виде стеклообразного синего материала, с содержанием хлорида кобальта. Он характеризуется значительной удельной массой. Вещество производится в виде гранул шарообразной формы. По его цветовому оттенку можно определить степень увлажнённости воздуха окружающей среды.

В зависимости от условий эксплуатации оборудования и предназначения, применяются следующие марки данного вещества:

  • КСМГ – крупный материал пористой структуры, производимый с обеспечением требований, предусмотренных государственными стандартами. Используется при уровне влажности воздуха в пределах от 20 до 60 процентов;
  • КСКГ – вещество аналогичной структуры, применяется при большом уровне влажности, от 70 до 100 процентов;
  • КСМГ – материал с индикаторными свойствами, выполняющий контрольные функции.

Последний материал в приведённом перечне используется не в трансформаторах, а при хранении и перевозке оптического, транспортного и прочего оборудования.

Характеристики(можно увеличить таблицу кликнув по ней):

Характеристики силикагеля типа КСМГ и КСКГ

Формула: SiO2 • n H2O

Перед применением силикагель должен быть просушен в проточном горячем воздухе или в сушильном шкафу при 150-180°С в течение 3-4 часов для удаления адсорбированной влаги.

Коэффициент — абсорбция

Коэффициенты абсорбции определяли на опытном абсорбере диаметром 100 мм ; хотя влияние всех параметров не было полностью изучено, удалось выявить некоторые закономерности. Концентрация раствора и газа, температура и отношение жидкость: газ в этих опытах поддерживались в обычных для промышленных абсорберов пределах и полученные данные представляют практическую ценность.

Коэффициент абсорбции характеризует объем газа, растворяющегося при стандартных условиях в единице объема раствора, его значения приводятся в справочной литературе.

Коэффициент абсорбции измеряется при температуре не ниже 10 С.

Кинетика абсорбции кислорода из воздуха 1 н. водным раствором сульфита натрия при 30 С в аппаратах с мешалкой в зависимости от удельных затрат энергии N / V.

Коэффициенты абсорбции , полученные на системе воздух — раствор сульфита, по-видимому, применимы и для других систем кислород — вода при условии, если сопротивление массопередаче сосредоточено в жидкой фазе.

Коэффициенты абсорбции могут быть определены или непосредственно из опыта или вычислены путем применения обобщенных уравнений, установленных на основе применения теории подобия.

Коэффициент абсорбции дает возможность судить о состоянии изоляции обмоток. Увлажненные обмотки имеют коэффициент абсорбции, близкий к единице.

Коэффициенты абсорбции определены раздельно для процессов хемосорбции брома, абсорбции бромистого аммония ( продукта реакции) и для суммарного процесса абсорбции.

Коэффициент абсорбции характеризует скорость растворения газового компонента в жидкости и определяется общим сопротивлением диффузии этого компонента через газовую и жидкостную пленки.

Коэффициент абсорбции учитывает количество вещества, диффундирующее через пленки при движущей силе абсорбции 1 мм рт. ст. Естественно, что чем эта величина больше, тем интенсивнее идет процесс абсорбции. Для абсорбции бензола маслом, как и для всех систем, в которых жидкость поглощает хорошо растворяющийся газ, основным сопротивлением является сопротивление газовой пленки. Уменьшение сопротивления газовой пленки достигается увеличением турбулентности газового потока.

Коэффициент абсорбции в меньшей степени, чем сопротивление изоляции, зависит от размеров изоляции и ее температуры, что повышает надежность измерений.

Коэффициент абсорбции практически не зависит от размеров и мощности объекта, что дает возможность его нормировать.

Зависимость вязкости глицерина и некоторых масел от температуры.

Коэффициент абсорбции зависит от физических свойств перекачиваемой жидкости.

Схема мегомметра.

Измерение сопротивления изоляции электродвигателей

Такие измерения производятся не только при ремонте. Например, если в процессе эксплуатации требуется провести диагностику электродвигателя и питающего кабеля в случае отключения от защит. Также требуется измерять этот параметр перед пуском аппарата после его длительного простоя, особенно в неблагоприятных рабочих условиях.

Для статоров низковольтных двигателей норма составляет 1 МОм, при этом температура испытуемого объекта находится в пределах 10-30˚С. При температуре 60˚С допустимая величина снижается до 0,5 МОм.

Аппараты напряжением выше 1000 В разделяются на две категории. Для мощностей обмотки статора 1 — 5 МВт предельные значения указаны в таблице.

Для более мощных, свыше 5 МВт, моторов, подход к процессу более ответственный. Измерения производятся в строгом соответствии с инструкциями изготовителя.

У асинхронных машин с фазным ротором, в том числе синхронных, имеющих обмотку возбуждения, тестируется и изоляция обмотки ротора. Но только у высоковольтных движков, имеющих мощность свыше 1 МВт. Используется мегаомметр на 1000 В. Предельное значение — 0,2 МОм.

Мощные электродвигатели для предотвращения появления паразитных токов в валах, замыкающихся на установочной раме, имеют изоляцию опор с подшипниками. Также подшипники изолируются от маслопроводов, осуществляющих их смазку при работе. Состояние этого вида изоляции проверяется мегаомметром на 1000 В.

Этот параметр контролируется после капитальных ремонтов, связанных с выемкой ротора. Сопротивление должно иметь значение, отличное от нуля, и не снизиться резко относительно ранее полученных результатов. Более точного значения правилами не предусмотрено.

Требования безопасности при проведении испытаний

Для обеспечения безопасности, требуется соблюдение следующих требований в ходе проведения данных испытаний:

  • работы не допускается проводить в одиночку;
  • чтобы предупредить опасность поражения током, следует пользоваться установленными средствами защиты;
  • при подсоединении контактов оборудование должно быть обесточено;
  • зона выполнения работ предварительно ограждается, с установкой знаков безопасности и предупредительных плакатов;
  • не разрешается прикасаться к элементам, находящимся под напряжением, без использования специальных изолирующих штанг;
  • применение диэлектрических перчаток обязательно, если значение напряжения превышает 1 кВ.

Измерения должны проводиться специалистами аккредитованной лаборатории с использованием оборудования, прошедшего своевременную поверку.

Коэффициент абсорбции позволяет установить соответствие состояния изоляционного покрытия провода обмоток требованиям нормативных документов и обеспечить контроль работоспособности трансформаторов.

Преимущества и недостатки регулирования посредством РПН

Преимущества регулирования без отключения нагрузки в возможности поддержания параметров сети на выходе трансформатора на заданном уровне при изменении характеристик подаваемого напряжения. Также это устройство позволяет регулировать параметры, с учётом необходимой величины. Выполнение указанных функций достигается без отключения агрегата.

Недостатки связаны с необходимостью усложнения конструкции трансформатора, связанной с использованием дополнительных элементов. Одновременно снижается надёжность работы агрегата, увеличивается его масса и габаритные размеры.

Коэффициент — абсорбция

Коэффициенты абсорбции определяли на опытном абсорбере диаметром 100 мм ; хотя влияние всех параметров не было полностью изучено, удалось выявить некоторые закономерности. Концентрация раствора и газа, температура и отношение жидкость: газ в этих опытах поддерживались в обычных для промышленных абсорберов пределах и полученные данные представляют практическую ценность.  

Коэффициент абсорбции характеризует объем газа, растворяющегося при стандартных условиях в единице объема раствора, его значения приводятся в справочной литературе.  

Коэффициент абсорбции измеряется при температуре не ниже 10 С.  

Кинетика абсорбции кислорода из воздуха 1 н. водным раствором сульфита натрия при 30 С в аппаратах с мешалкой в зависимости от удельных затрат энергии N / V.  

Коэффициенты абсорбции, полученные на системе воздух — раствор сульфита, по-видимому, применимы и для других систем кислород — вода при условии, если сопротивление массопередаче сосредоточено в жидкой фазе.  

Коэффициенты абсорбции могут быть определены или непосредственно из опыта или вычислены путем применения обобщенных уравнений, установленных на основе применения теории подобия.  

Советуем изучить — Бесконтактные выключатели сенсор

Коэффициент абсорбции дает возможность судить о состоянии изоляции обмоток. Увлажненные обмотки имеют коэффициент абсорбции, близкий к единице.  

Коэффициенты абсорбции определены раздельно для процессов хемосорбции брома, абсорбции бромистого аммония ( продукта реакции) и для суммарного процесса абсорбции.  

Коэффициент абсорбции характеризует скорость растворения газового компонента в жидкости и определяется общим сопротивлением диффузии этого компонента через газовую и жидкостную пленки.  

Коэффициент абсорбции учитывает количество вещества, диффундирующее через пленки при движущей силе абсорбции 1 мм рт. ст. Естественно, что чем эта величина больше, тем интенсивнее идет процесс абсорбции. Для абсорбции бензола маслом, как и для всех систем, в которых жидкость поглощает хорошо растворяющийся газ, основным сопротивлением является сопротивление газовой пленки. Уменьшение сопротивления газовой пленки достигается увеличением турбулентности газового потока.  

Коэффициент абсорбции в меньшей степени, чем сопротивление изоляции, зависит от размеров изоляции и ее температуры, что повышает надежность измерений.  

Коэффициент абсорбции практически не зависит от размеров и мощности объекта, что дает возможность его нормировать.  

Зависимость вязкости глицерина и некоторых масел от температуры.  

Коэффициент абсорбции зависит от физических свойств перекачиваемой жидкости.  

Схема мегомметра.  

Что такое коэффициент абсорбции?

Коэффициент абсорбции — отношение R60 к R15, где R60 представляет значение сопротивления изоляции, отсчитанное через 60 сек. После приложения напряжения, R15 — то же, отсчитанное через 15 сек.

Физическая сущность коэффициента: всякая электрическая изоляция обладает электрической емкостью. Приложенное к изоляции напряжение мегомметра обусловливает проникновение через точку изоляции токов, которые как бы «насыщают» изоляцию. Эти токи названы токами абсорбции. Времени для проникновения тока в изоляцию требуется тем больше, чем больше геометрические размеры и лучше качество изоляции, препятствующей этому. Из этого следует, что тем больше изоляция увлажнена, тем коэффициент абсорбции будет меньше. Но нужно учитывать тот факт, что при увеличении температуры изоляции значение коэффициента абсорбции уменьшается, и, наоборот, при снижении — увеличивается.

Условия включения силовых трансформаторов на параллельную работу

Допускается параллельная работа трансформаторов (автотрансформаторов) при условии, что ни одна из обмоток не будет нагружена током, превышающим допустимый ток для данной обмотки.

Параллельная работа трансформаторов разрешается при следующих условиях: группы соединения обмоток одинаковы, соотношение мощностей трансформаторов не более 1:3, коэффициенты трансформации отличаются не более чем на ±0,5%, напряжения короткого замыкания отличаются не более чем на ±10%, произведена фазировка трансформаторов.

Для выравнивания нагрузки между параллельно работающими трансформаторами с отличными напряжениями к.з. допускается в небольших пределах изменение коэффициента трансформации путем переключения ответвлений при условии, что ни один из трансформаторов не будет перегружен.

Как правило, на параллельную работу должны включаться одинаковые трансформаторы (с точностью до производственных отклонений).

Назовите системы заземления электроустановок

Можно выделить следующие три системы, а также еще три подсистемы заземлений:

Cистема TN: подсистемы TN-C, TN-S, TN-C-S.

Система ТТ.

Система IT.

Международная классификация систем заземлений обозначается заглавными буквами. Первая буква указывает на характер ЗАЗЕМЛЕНИЯ ИСТОЧНИКА ПИТАНИЯ , вторая – на характер ЗАЗЕМЛЕНИЯ ОТКРЫТЫХ ЧАСТЕЙ ЭЛЕКТРОУСТАНОВКИ.

Аббревиатура букв расшифровывается так:

T (terre — земля) — заземлено;

N (neuter — нейтраль) — присоединено к нейтрали источника (занулено);

I (isole) — изолировано.

https://electric-tolk.ru/sistemy-zazemleniya-tn-s-tn-c-s-tn-s-tt-it/

159. Что такое группа соединения обмоток трансформатора.

Группы соединений трансформаторов характеризуются угловым смещением векторов э. д. с. в обмотках ВН, СН и НН. Смещение этих векторов определяется схемой соединения обмоток и направлением намотки обмоток. Обмотки ВН, СН и НН трансформатора могут быть соединены в различные схемы.

Соединяя обмотки ВН, СН и НН одним из этих способов и изменяя направление их намотки, можно получать различные группы соединения обмоток. Ранее было указано, что для силовых трехфазных трансформаторов применяются соединения обмоток в звезду и треугольник. При различных соединениях обмоток в звезду и треугольник можно получить 12 различных углов сдвига фаз линейных э. д. с. от 0 до 330° через каждые 30°, т. е. получить 12 различных групп.

Удобно для определения угла сдвига фаз пользоваться часовым обозначением, которое принято ГОСТ. Часовое обозначение векторов э. д. с. заключается в следующем: вектор линейной э. д. с. обмотки ВН изображается па часовом циферблате минутной стрелкой и всегда устанавливается на 12 а вектор линейной э. д. с. обмотки СН (трехобмоточного трансформатора) или НН изображается часовой стрелкой и укажет группу в часовом обозначении.

Метод измерения тока релаксации, IRC-анализ

Предназначен для диагностики изоляции из сшитого полиэтилена. Это метод измерения разрядного тока, метод амперметра. Проводится после предварительного заряда изоляции напряжением 1 кВ. Кривые разрядного тока в изоляции приведены на рисунке.

Первый график показывает изменение разрядного тока после отключения источника испытательного тока и разряда геометрической емкости кабельной линии. Хорошо видно, что такой график трудно поддается анализу, так как не имеет характерных точек.

На втором графике для того же сигнала по вертикальной оси отложено произведение величины разрядного тока на время от момента начала регистрации. С физической точки зрения площадь этой кривой пропорциональна величине заряда, накопленной в изоляции. При помощи этой кривой можно легко сравнивать между собой изоляцию нескольких объектов.

В соответствии с многослойной схемой замещения изоляции, чем раньше на графике будет наблюдаться пик, тем хуже состояние изоляции и больше ее загрязнение и увлажнение, тем меньшим остаточным ресурсом обладает изоляция контролируемого объекта.

Следует понимать, что само значение амплитуды пика на этом графике не несет большого физического смысла, обычно график следует рассматривать как безразмерный, сравнивая только времена достижения пика. Из двух одинаковых высоковольтных объектов худшим является тот, в котором амплитудное значение на графике достигается раньше. Аналогично можно говорить и о сравнении изоляции фаз одного объекта.

Стоимость отопления

Из расчета на дом площадью 100 м² за весь отопительный сезон (7 мес.)

ТВЕРДОТОПЛИВНОЕ ОТОПЛЕНИЕ

Особенности

  • Постоянный присмотр
  • Запах в доме(копоть, гарь, грязь)
  • Загрязненный воздух
  • Частая загрузка, чистка золы
  • Складирование топлива

ГАЗОВОЕ ОТОПЛЕНИЕ

Особенности

  • Удовольствие от использования
  • Свобода и комфортная жизнь
  • Автоматизация всех процессов
  • Надежность
  • Быстрая окупаемость
  • Экологичность
  • Автономность и независимость

ЭЛЕКТРИЧЕСКОЕ ОТОПЛЕНИЕ

Особенности

  • Недостаток выделенных киловатт
  • Незащищенность от перепада напряжения
  • Высокая стоимость использования электроэнергии
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: