Турбовинтовой двигатель самолета: устройство и принцип работы

Примечания

  1. ↑ .
  2. ↑ Теория и расчёт воздушно-реактивных двигателей. Учебник для вузов. Авторы: В. М. Акимов, В. И. Бакулев, Р. И. Курзинер, В. В. Поляков, В. А. Сосунов, С. М. Шляхтенко. Под редакцией С. М. Шляхтенко. 2-е издание, переработанное и дополненное. М.: Машиностроение, 1987
  3. Александр Грек. Человек, который купил космодром // Популярная механика. — 2017. — № 11. — С. 54.
  4. Андрей Суворов. Ядерный след // Популярная механика. — 2018. — № 5. — С. 88-92.
В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.Эта отметка установлена 17 ноября 2011 года.
Эта статья требует оформления и доводки. В этой статье необходимо:
  1. улучшить стиль написания статьи;
  2. проработать структуру (разделы) статьи;
  3. проставить и заполнить карточки, оформить статью в целом с использованием вики-разметки;
  4. аккуратно разместить и подписать изображения;
  5. сделать ссылками ключевые слова и даты в тексте;
  6. подписать сноски и ссылки.

Если вы желаете оформить данную статью, пожалуйста, отредактируйте данный шаблон в тексте статьи, дописав в него

Двигатели
Двигатели внутреннего сгорания (кроме турбинных)
Возвратно-поступательные
Количество тактов
  • Двухтактный двигатель
  • Четырёхтактный двигатель
  • Пятитактный двигатель
  • Шеститактный двигатель
Расположениецилиндров
  • Рядный двигатель
  • Оппозитный двигатель
  • Н-образный двигатель
  • V-образный двигатель
  • VR-образный двигатель
  • W-образный двигатель
  • Звездообразный двигатель
  • X-образный двигатель
Типы поршней
  • Свободно-поршневые
  • Двигатель со встречным движением поршней
  • Аксиальные
Способвоспламенения
  • Дизельные
  • Компрессионные карбюраторные
  • Калильно-компрессионный
  • Калильные карбюраторные
  • Батарейное зажигание
  • Магнето
  • Дуговые и искровые свечи
Роторные
  • Двигатель Ванкеля
  • Орбитальный двигатель
  • Роторно-лопастной двигатель Вигриянова
Комбинированные
  • Гибридные
  • Двигатель Хессельмана
Воздушно-реактивные
Основные типы
Бескомпрессорные
  • Прямоточные
  • Пульсирующие
Турбореактивные
  • Турбовентиляторные (двухконтурные)
  • Турбовинтовые
  • Турбовинтовентиляторные
  • Турбовальные
Модификациии гибридные системы
  • Мотокомпрессорный воздушно-реактивный двигатель
  • Гиперзвуковые прямоточные
См. также: Газотурбинные двигатели
Ракетные двигатели
  • Выбрасывающий
  • Стартовый
  • Разгонный
  • Маршевый
  • Маневровый
Химические
Жидкостные
  • Закрытого цикла
  • Открытого цикла
  • С фазовым переходом
  • Двигатель Вальтера
Другие
  • Твердотопливные
  • Топливно-гибридные
Ядерные
  • Термоядерные
  • Газофазно-ядерные
  • Твёрдофазно-ядерные
  • Солевые
Электрические
  • Плазменные
  • Ионные
  • Электротермические
  • Электростатические
Другие
  • Клиновоздушный
  • Двигатель Бассарда
Двигатели внешнего сгорания
  • Паровая машина
  • Двигатель Стирлинга
  • Пневматический двигатель
Турбины и механизмы с турбинами в составе
По виду рабочего тела
Газовые
  • Газотурбинная установка
  • Газотурбинная электростанция
  • Газотурбинные двигатели
Паровые
  • Парогазовая установка
  • Конденсационная турбина
Гидравлические турбины
  • Пропеллерная турбина
  • Гидротрансформатор
По конструктивным особенностям
  • Осевая (аксиальная) турбина
  • Центробежная турбина
    • радиальная
    • диагональная
  • Радиально-осевая турбина (турбина Френсиса)
  • Поворотно-лопастная турбина (турбина Каплана)
  • Ковшовая турбина (турбина Пелтона)
  • Турбина Турго
  • Ротор Дарье
  • Турбина Уэльса
  • Турбина Тесла
  • Сегнерово колесо
Электродвигатели
  • Постоянного тока
  • Переменного тока
  • Многофазные
  • Трёхфазные
  • Двухфазные
  • Однофазные
  • Универсальные
Асинхронные
Синхронные
  • Бесколлекторные (Вентильный двигатель)
  • Коллекторные
  • Вентильные реактивные
  • Шаговые
Другие
  • Линейные
  • Гистерезисные
  • Униполярные
  • Ультразвуковые
  • Мендосинский мотор
Биологические двигатели
Моторные белки
  • Актин
  • Динеин
  • Кинезин
  • Миозин
  • Тропомиозин
  • Тропонин
  • Флагеллин
См. также
Вечный двигатель
Мотор-редуктор

Применение

Сфера применения двухконтурных турбореактивных двигателей очень широкая. Они смогли охватить практически всю авиацию, потеснив собой ТРД и ТВД. Главный недостаток реактивных моторов – их неэкономичность – удалось частично победить, так что сейчас большинство гражданских и практически все военные самолеты оснащены ТРДД. Для военной авиации, где важны компактность, мощность и легкость моторов, используются ТРДД с малой степенью двухконтурности (к<1) и форсажными камерами. На пассажирских и грузовых самолетах устанавливаются ТРДД  со степенью двухконтурности к>2, что позволяет сэкономить немало топлива на дозвуковых скоростях и снизить стоимость перелетов.

Двухконтурные турбореактивные двигатели с малой степенью двухконтурности на военном самолете.

СУ-35 с установленными на нем 2мя двигателями АЛ-41Ф1С

Преимущества и недостатки

Двухконтурные турбореактивные двигатели имеют огромное преимущество в сравнении с ТРД в виде значительного сокращения расхода топлива без потерь мощности. Но при этом их конструкция более сложная, а вес намного больше. Понятно, что чем больше значение степени двухконтурности, тем экономичнее мотор, но это значение можно увеличить только одним способом – за счет увеличения диаметра второго контура, что даст возможность пропустить через него больше воздуха. Это и есть основным недостатком ТРДД. Достаточно посмотреть на некоторые ТВРД, устанавливаемые на крупные гражданские самолеты, чтобы понять, как они утяжеляют общую конструкцию. Диаметр их второго контура может достигать нескольких метров, а в целях экономии материалов и снижения их массы он выполняются более коротким, чем первый контур. Еще один минус крупных конструкций – высокое лобовое сопротивление во время полета, что в некоторой степени снижает скорость полета. Использование ТРДД в целях экономии топлива оправдано на дозвуковых скоростях, при преодолении звукового барьера реактивная тяга второго контура становится малоэффективной.

Различные конструкции и использование дополнительных конструктивных элементов в каждом отдельном случае позволяет получить нужный вариант ТРДД. Если важна экономия, устанавливаются турбовентиляторные двигатели с большим диаметром и высокой степенью двухконтурности. Если нужен компактный и мощный мотор, используются обычные ТРДД с форсажной камерой или без нее. Главное здесь найти компромисс и понять, какие приоритеты должны быть у конкретной модели. Военные истребители и бомбардировщики не могут оснащаться двигателями с трехметровым диаметром, да им это и не нужно, ведь в их случае приоритетны не столько экономия, сколько скорость и маневренность. Здесь же чаще используются и ТРДД с форсажными камерами (ТРДДФ) для увеличения тяги на сверхзвуковых скоростях или при запуске. А для гражданской авиации, где сами самолеты имеют большие размеры, вполне приемлемы крупные и тяжелые моторы с высокой степенью двухконтурности.

Применение

Нашел себе применение турбовальный двигатель и на земле. Правильнее даже говорить, что именно на земле он изначально и использовался, и только после появления авиации, как таковой, «переселился» на небо. Его можно встретить и на транспорте, и на различных магистральных станциях, где он обычно используется, как альтернатива дизельного двигателя. В сравнении с дизелем ТВД более легкий по весу, менее шумный и более мощный, если брать двигатели одного размера.

В промышленности и народном хозяйства

ТВаД успешно используется в качестве нагнетателя природного газа на газоперекачивающих станциях. Его нередко можно увидеть на крупных газовых магистралях. Одна из последних разработок газовая турбина T16, мощностью 16 МВт. Короткое видео с применением турбовального двигателя в электроэнергетики.

Основные показатели:

  • 16,5 МВт — мощность на валу.
  • 37% — КПД, механический привод.
  • 36% — КПД, электрический (простой цикл).
  • 80% — КПД, комбинированное производство электроэнергии и тепла
  • 200 000 часов — полный жизненный цикл
  • выбросы NOx — не более 25 ppm.

Турбовальные двигатели используются в мобильных электростанциях для привода генератора. Электростанции с данным двигателем занимают меньший объем, аналогичной электростанции с традиционными двигателями.

В транспортной сфере

Несмотря на то, что в большинстве случаев турбовальные двигатели описываются, как силовые установки вертолетов, их применение не ограничено только ими. Частенько ТВаД играет роль не основного движителя, а вспомогательной установки. Такими установками обычно оснащаются самолеты, а используются они для питания энергией основных систем судна при его наземном обслуживании. То есть, когда самолет находится на земле, не обязательно запускать его основные моторы для получения электричества или создания давления в гидросистемах, для этого достаточно запуска такой небольшой установки. Также ТВаД используется в качестве пускового агрегата, который проворачивает ротор турбины при запуске. В этом случае он имеет название турбостартер.

Вид железнодорожного транспорта, на который устанавливается ТВаД, носит название газотурбовоз. Принцип его работы заключается в том, что турбовальный двигатель вращает вал генератора, вырабатывающего электрический ток. Ток поступает на электромоторы, которые, по сути, и являются основной силовой установкой. История газотурбовозов началась в 60-е годы, когда были сконструированы первые опытные образцы, правда, потом они уступили место более известным сейчас электровозам. Вместе с тем с 2007 года возобновились работы по созданию газотурбовозов, и даже был создан пробный экземпляр, работающий на сжиженном газе. Его испытания прошли успешно, так что в скором будущем, возможно, он будет выпускаться серийно.

Не обошли стороной ТВаД и создатели военной наземной техники. Некоторые танки, в том числе и отечественный Т-80 и американский М1 Abrams, оснащены ТВаД. Короткое видео разработки, внедрения и применения турбовального двигателя на танке.

Турбовальные двигатели также используются и на водном транспорте, называемом газотурбоходами. К ним относятся суда на воздушной подушке или на подводных крыльях. Наиболее известным отечественным газотурбоходом является военное судно «Зубр» — наиболее крупный десантный корабль на воздушной подушке. Этот гигант известен далеко за пределами России и является мировым рекордсменом среди суден на воздушной подушке по своим габаритам. А вот с отечественными пассажирскими газотурбоходами как-то не сложилось. Судно «Циклон», сконструированное в 80-хх годах, не пережило перестройки и со временем забылось, а новые пассажирские суда, оснащенные ТВаД пока не появились.

Танк Т-80 с газотурбинным двигателем

Десантное судно «Зубр»

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

Строение турбовинтового двигателя

Рабочий вал

Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

Компрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты

Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата

Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

Воздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее,  тем больше линейная скорость на их концах.

Турбина

Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

Принцип работы

Принцип работы ТВВД в общих чертах напоминает принцип работы двухконтурного турбореактивного двигателя, коим он в определенной степени и является. Поток воздуха попадает в первый контур – корпус двигателя. Там он попадает в осевой компрессор на его подвижные лопатки, которые сжимают его и вытесняют в направлении неподвижные лопаток, придающих ему осевое направление движения. Ряд неподвижных и подвижных лопаток – это ступень компрессора, и чем больше таких ступеней, тем выше степень сжатия воздуха.

После сжатия в компрессоре воздушный поток под давлением поступает в камеру сгорания, где находятся топливные форсунки и воспламенители. Сама камера сгорания может быть кольцевой или же состоять из нескольких отдельных жаровых труб. В ней воздух перемешивается с впрыснутым через форсунки топливом, образуя топливный заряд, который воспламеняется и сгорает, образуя расширенные газы.

Продукты горения в виде газов, находящихся под высоким давлением, выходят из камеры сгорания и попадают на лопасти турбины. Турбина, как и компрессор, имеет неподвижные и подвижные лопатки, только устанавливаются они наоборот: сначала газы проходят через неподвижные лопасти, выравнивая свое направление, а затем попадают на подвижные, отдавая им часть своей энергии. За счет воздействия газов на лопатки турбина вращается, приводя в движение компрессор, закрепленный с ней на одном валу. Как и компрессор, турбина состоит из нескольких ступеней, но их количество не превышает 5-ти.

В турбовинтовентиляторном двигателе кроме основной турбины есть еще одна, вращающая винтовентилятор, и эти турбины работают независимо одна от другой. Вал привода вентилятора обычно размещается внутри вала привода компрессора, при расположении винтовентилятора в передней части двигателя. Если винтовентилятор располагается в задней части ТВВД, то свободная турбина связана напрямую с винтами через корпус, что упрощает конструкцию. Турбина винтовентилятора размещена за основной турбиной и приводится в движение все теми же газами.

После прохождения турбин отработанные газы, все еще имеющие высокую скорость и температуру, выходят наружу через сопло, образуя реактивную тягу. Сопло в самом простом исполнении – это сужающаяся труба, но в некоторых случаях можно регулировать ее сечение и даже направленность выхода реактивного потока.

Особенности двигателя

ТВВД оснащается одним или двумя винтовентиляторами, которые одновременно нагнетают воздух в первый контур, представляющий собой обычный турбореактивный двигатель, и создает дополнительную тягу. ТВВД – это вид двухконтурных турбореактивных двигателей с очень высокой степенью двухконтурности (в среднем 20-50, но может доходить и до 90). Под степенью двухконтурности имеется в виду отношения количества воздуха, прошедшего по второму контуру, к количеству воздуха, прошедшего через первый. Чем выше этот показатель, тем более эффективным является двигатель.

ТВВД, как и другие представители семейства газотурбинных двигателей, состоит из компрессора, камеры сгорания топлива, газовой турбины и сопла. Кроме того, этот тип мотора имеет дополнительную турбину, приводящую в движение винтовентилятор через редуктор. В этом отношении ТВВД схож с ТВД, где воздушный винт тоже соединен с приводной турбиной через редуктор, понижающий угловую скорость вращения и увеличивающую момент, правда, лопасти винтовентилятора меньше лопастей винта почти в 2 раза и он играет немного другую роль в общей работе мотора. Турбина в двигателе вращается со скоростью, достигающей 20-30 тыс. оборотов, но ни винт, ни винтовентилятор не могут эффективно работать при такой скорости, именно поэтому и используется редуктор. Вместе с тем его наличие в конструкции – это «слабое звено». Обычно в ТВВД используются планетарные редукторы, а они считаются самыми неэффективными среди всех видов шестеренчатых передач. Они чувствительны к повышенным нагрузкам, требовательны к качеству масла и к его рабочим параметрам. Вместе с тем особенности геометрии лопастей винтовентилятора позволяют повысить его КПД до 80-90% при полетах на дозвуковых скоростях, что перекрывает все конструктивные недостатки.

Устройство и принцип работы турбовинтового двигателя

Строение турбовинтового двигателя довольно простое. Он состоит из воздушного винта с редуктором, компрессора, камеры сгорания, турбины и выходного устройства – сопла. Компрессор нагнетает и сжимает воздух, направляя его в камеру сгорания, куда впрыскивается топливо. Горючая смесь, полученная при смешивании воздуха с топливом, воспламеняется, образуя газы с высокой потенциальной энергией, которые, расширяясь, поступают на лопасти турбины, вращая ее, а сама турбина вращает воздушный винт и компрессор. Энергия, не потраченная на вращение турбины, выходит в виде потока воздуха через сопло, образуя реактивную тягу, величина которой не более 10% от общей тяги мотора. Поскольку она незначительна по своей величине, ТВД не считается реактивным. Как видно, по своему строению и принципу работы турбовинтовой двигатель очень напоминает турбореактивный с той лишь разницей, что в первом случае выработанная полезная энергия идет на вращение винта, а во втором она полностью выходит в виде потока воздуха через сопло, образуя реактивную тягу.

Строение турбовинтового двигателя

Рабочий вал

Различают двухвальные и одновальные турбовинтовые двигатели. В одновальных ТВД турбина с компрессором и винт расположены на одном валу, тогда как в двухвальных между ними нет механической связи: турбина и компрессор закреплены на одном валу, а винт через редуктор – на другом. Во втором случае конструкция мотора включает в себя две турбины, связанные между собой не механически, а газодинамически: одна для компрессора, вторая для винта. Это более распространенный и эффективный вариант, который, несмотря на более сложную конструкцию, используется чаще. Такое решение позволяет использовать энергию двигателя без запуска винтов, что удобно в случаях, когда самолет находится на земле и нужно обеспечить выработку электроэнергии и подачу воздуха высокого давления.

Компрессор

Компрессор ТВД имеет ступенчатую конструкцию с числом ступеней в пределах 2-6, что позволяет воспринимать значительные перепады давления и температур при работе, регулировать и снижать обороты

Многоступенчатая конструкция также дает возможность снизить массу и размеры мотора, что немаловажно для авиационных двигателей, где на счету каждый грамм веса. Компрессор состоит из рабочех колес с лопатками и направляющего аппарата

Направляющий аппарат может быть как регулируемым (с поворачивающимися лопатками вокруг своей оси), так и не регулируемым.

Воздушный винт

Воздушный винт создает необходимую тягу, но при этом скорость его вращения ограничена. Наиболее эффективно он работает на скорости 750-1500 об/мин, после чего КПД падает, а сам винт из движителя фактически превращается в тормоз. Это явление носит название «эффект запирания» и связано оно с тем, что отдельные части лопастей винта на высоких оборотах начинают двигаться со скоростью, превышающей скорость звука, что становится причиной его некорректной работы. Это же происходит, если увеличить диаметр лопастей, ведь чем они длиннее, тем больше линейная скорость на их концах.

Турбина

Турбина же развивает скорость до 20 000 об/мин, но винт на таких оборотах просто не сможет работать, поэтому он оснащается понижающим редуктором, уменьшающим скорость вращения и повышающим момент. Редукторы по своему строению могут отличаться, но их задача – понижение скорости вращения и увеличение момента – остается неизменной. Ограничение скорости вращения винта во многом ограничивает использование ТВД особенно в военной авиации, где важна скорость, но ученые и конструкторы ведут активную работу по созданию сверхзвукового двигателя, правда, пока их старания не увенчались успехом. Для увеличения тяги на некоторых моделях устанавливаются по два винта, которые в процессе работы вращаются в противоположные стороны, приводимые в движение одним редуктором. Примером такого двигателя является Д-27, который называют турбовинтовентиляторным. Он оснащен двумя винто-вентиляторами, закрепленными через редуктор на оси свободной турбины. Пока это единственный двигатель такого рода, который используется в гражданской авиации на самолетах АН-70, но его появление и успешное использование смогут стать настоящим прорывом в сфере улучшения эксплуатационных показателей ТВД.

Технологические аспекты

Принципиальная схема, показывающая работу турбовинтового двигателя

Сравнение пропульсивной эффективности для различных конфигураций газотурбинных двигателей.

Выхлопная тяга в турбовинтовом двигателе приносится в жертву мощности на валу, которая получается за счет извлечения дополнительной мощности (сверх той, которая необходима для привода компрессора) от расширения турбины. Из-за дополнительного расширения турбинной системы остаточная энергия в выхлопной струе мала. Следовательно, выхлопная струя производит около 10% общей тяги. Большая часть тяги поступает от гребного винта на низких скоростях и меньше — на высоких.

Турбовинтовые двигатели имеют коэффициент двухконтурности 50-100, хотя воздушный поток движущей силы менее четко определен для гребных винтов, чем для вентиляторов.

Пропеллер соединен с турбиной через редуктор, который преобразует выходную мощность с высоким числом оборотов / низким крутящим моментом в низкие обороты / высокий крутящий момент. Сам пропеллер обычно представляет собой воздушный винт с постоянной скоростью (с изменяемым шагом), аналогичный тому, который используется в более крупных авиационных поршневых двигателях , за исключением того, что требования к управлению воздушным винтом сильно различаются.

В отличие от вентиляторов малого диаметра, используемых в турбовентиляторных реактивных двигателях, пропеллер имеет большой диаметр, что позволяет ему разгонять большой объем воздуха. Это позволяет снизить скорость воздушного потока для данной величины тяги. Поскольку на низких скоростях более эффективно ускорять большое количество воздуха в небольшой степени, чем небольшое количество воздуха в большой степени, низкая нагрузка на диск (тяга на единицу площади диска) увеличивает энергоэффективность самолета, а это снижает использование топлива.

Пропеллеры работают хорошо, пока скорость полета самолета не станет достаточно высокой, чтобы воздушный поток, проходящий мимо кончиков лопастей, достиг скорости звука. При превышении этой скорости пропорция мощности, приводящей в движение воздушный винт, которая преобразуется в тягу воздушного винта, резко падает. По этой причине турбовинтовые двигатели не используются на самолетах, которые летают со скоростью более 0,6–0,7 Маха . Однако винтовые двигатели, которые очень похожи на турбовинтовые, могут летать на крейсерских скоростях, приближающихся к 0,75 Маха. Для поддержания эффективности гребного винта в широком диапазоне скоростей полета в турбовинтовых двигателях используются гребные винты с постоянной скоростью (изменяемым шагом). Шаг лопастей винта с постоянной скоростью увеличивается по мере увеличения скорости самолета. Еще одним преимуществом этого типа гребного винта является то, что он также может использоваться для создания обратной тяги для уменьшения тормозного пути на взлетно-посадочной полосе. Кроме того, в случае отказа двигателя гребной винт может быть , что минимизирует сопротивление неработающего гребного винта.

Хотя силовая турбина может быть объединена с секцией газогенератора, сегодня многие турбовинтовые двигатели имеют свободную силовую турбину на отдельном коаксиальном валу. Это позволяет гребному винту вращаться свободно, независимо от скорости компрессора.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Ас ремонта
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!:

Adblock
detector